src/HOL/Divides.ML
changeset 13152 2a54f99b44b3
parent 13151 0f1c6fa846f2
child 13153 4b052946b41c
equal deleted inserted replaced
13151:0f1c6fa846f2 13152:2a54f99b44b3
     1 (*  Title:      HOL/Divides.ML
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 The division operators div, mod and the divides relation "dvd"
       
     7 *)
       
     8 
       
     9 
       
    10 (** Less-then properties **)
       
    11 
       
    12 bind_thm ("wf_less_trans", [eq_reflection, wf_pred_nat RS wf_trancl] MRS 
       
    13                     def_wfrec RS trans);
       
    14 
       
    15 Goal "(%m. m mod n) = wfrec (trancl pred_nat) \
       
    16 \                           (%f j. if j<n | n=0 then j else f (j-n))";
       
    17 by (simp_tac (simpset() addsimps [mod_def]) 1);
       
    18 qed "mod_eq";
       
    19 
       
    20 Goal "(%m. m div n) = wfrec (trancl pred_nat) \
       
    21 \            (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))";
       
    22 by (simp_tac (simpset() addsimps [div_def]) 1);
       
    23 qed "div_eq";
       
    24 
       
    25 
       
    26 (** Aribtrary definitions for division by zero.  Useful to simplify 
       
    27     certain equations **)
       
    28 
       
    29 Goal "a div 0 = (0::nat)";
       
    30 by (rtac (div_eq RS wf_less_trans) 1);
       
    31 by (Asm_simp_tac 1);
       
    32 qed "DIVISION_BY_ZERO_DIV";  (*NOT for adding to default simpset*)
       
    33 
       
    34 Goal "a mod 0 = (a::nat)";
       
    35 by (rtac (mod_eq RS wf_less_trans) 1);
       
    36 by (Asm_simp_tac 1);
       
    37 qed "DIVISION_BY_ZERO_MOD";  (*NOT for adding to default simpset*)
       
    38 
       
    39 fun div_undefined_case_tac s i =
       
    40   case_tac s i THEN 
       
    41   Full_simp_tac (i+1) THEN
       
    42   asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_DIV, 
       
    43 				    DIVISION_BY_ZERO_MOD]) i;
       
    44 
       
    45 (*** Remainder ***)
       
    46 
       
    47 Goal "m<n ==> m mod n = (m::nat)";
       
    48 by (rtac (mod_eq RS wf_less_trans) 1);
       
    49 by (Asm_simp_tac 1);
       
    50 qed "mod_less";
       
    51 Addsimps [mod_less];
       
    52 
       
    53 Goal "~ m < (n::nat) ==> m mod n = (m-n) mod n";
       
    54 by (div_undefined_case_tac "n=0" 1);
       
    55 by (rtac (mod_eq RS wf_less_trans) 1);
       
    56 by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
       
    57 qed "mod_geq";
       
    58 
       
    59 (*Avoids the ugly ~m<n above*)
       
    60 Goal "(n::nat) <= m ==> m mod n = (m-n) mod n";
       
    61 by (asm_simp_tac (simpset() addsimps [mod_geq, not_less_iff_le]) 1);
       
    62 qed "le_mod_geq";
       
    63 
       
    64 Goal "m mod (n::nat) = (if m<n then m else (m-n) mod n)";
       
    65 by (asm_simp_tac (simpset() addsimps [mod_geq]) 1);
       
    66 qed "mod_if";
       
    67 
       
    68 Goal "m mod Suc 0 = 0";
       
    69 by (induct_tac "m" 1);
       
    70 by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_geq])));
       
    71 qed "mod_1";
       
    72 Addsimps [mod_1];
       
    73 
       
    74 Goal "n mod n = (0::nat)";
       
    75 by (div_undefined_case_tac "n=0" 1);
       
    76 by (asm_simp_tac (simpset() addsimps [mod_geq]) 1);
       
    77 qed "mod_self";
       
    78 Addsimps [mod_self];
       
    79 
       
    80 Goal "(m+n) mod n = m mod (n::nat)";
       
    81 by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1);
       
    82 by (stac (mod_geq RS sym) 2);
       
    83 by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute])));
       
    84 qed "mod_add_self2";
       
    85 
       
    86 Goal "(n+m) mod n = m mod (n::nat)";
       
    87 by (asm_simp_tac (simpset() addsimps [add_commute, mod_add_self2]) 1);
       
    88 qed "mod_add_self1";
       
    89 
       
    90 Addsimps [mod_add_self1, mod_add_self2];
       
    91 
       
    92 Goal "(m + k*n) mod n = m mod (n::nat)";
       
    93 by (induct_tac "k" 1);
       
    94 by (ALLGOALS
       
    95     (asm_simp_tac 
       
    96      (simpset() addsimps [read_instantiate [("y","n")] add_left_commute])));
       
    97 qed "mod_mult_self1";
       
    98 
       
    99 Goal "(m + n*k) mod n = m mod (n::nat)";
       
   100 by (asm_simp_tac (simpset() addsimps [mult_commute, mod_mult_self1]) 1);
       
   101 qed "mod_mult_self2";
       
   102 
       
   103 Addsimps [mod_mult_self1, mod_mult_self2];
       
   104 
       
   105 Goal "(m mod n) * (k::nat) = (m*k) mod (n*k)";
       
   106 by (div_undefined_case_tac "n=0" 1);
       
   107 by (div_undefined_case_tac "k=0" 1);
       
   108 by (induct_thm_tac nat_less_induct "m" 1);
       
   109 by (stac mod_if 1);
       
   110 by (Asm_simp_tac 1);
       
   111 by (asm_simp_tac (simpset() addsimps [mod_geq, 
       
   112 				      diff_less, diff_mult_distrib]) 1);
       
   113 qed "mod_mult_distrib";
       
   114 
       
   115 Goal "(k::nat) * (m mod n) = (k*m) mod (k*n)";
       
   116 by (asm_simp_tac 
       
   117     (simpset() addsimps [read_instantiate [("m","k")] mult_commute, 
       
   118 			 mod_mult_distrib]) 1);
       
   119 qed "mod_mult_distrib2";
       
   120 
       
   121 Goal "(m*n) mod n = (0::nat)";
       
   122 by (div_undefined_case_tac "n=0" 1);
       
   123 by (induct_tac "m" 1);
       
   124 by (Asm_simp_tac 1);
       
   125 by (rename_tac "k" 1);
       
   126 by (cut_inst_tac [("m","k*n"),("n","n")] mod_add_self2 1);
       
   127 by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1);
       
   128 qed "mod_mult_self_is_0";
       
   129 
       
   130 Goal "(n*m) mod n = (0::nat)";
       
   131 by (simp_tac (simpset() addsimps [mult_commute, mod_mult_self_is_0]) 1);
       
   132 qed "mod_mult_self1_is_0";
       
   133 Addsimps [mod_mult_self_is_0, mod_mult_self1_is_0];
       
   134 
       
   135 
       
   136 (*** Quotient ***)
       
   137 
       
   138 Goal "m<n ==> m div n = (0::nat)";
       
   139 by (rtac (div_eq RS wf_less_trans) 1);
       
   140 by (Asm_simp_tac 1);
       
   141 qed "div_less";
       
   142 Addsimps [div_less];
       
   143 
       
   144 Goal "[| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
       
   145 by (rtac (div_eq RS wf_less_trans) 1);
       
   146 by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
       
   147 qed "div_geq";
       
   148 
       
   149 (*Avoids the ugly ~m<n above*)
       
   150 Goal "[| 0<n;  n<=m |] ==> m div n = Suc((m-n) div n)";
       
   151 by (asm_simp_tac (simpset() addsimps [div_geq, not_less_iff_le]) 1);
       
   152 qed "le_div_geq";
       
   153 
       
   154 Goal "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))";
       
   155 by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
       
   156 qed "div_if";
       
   157 
       
   158 
       
   159 (*Main Result about quotient and remainder.*)
       
   160 Goal "(m div n)*n + m mod n = (m::nat)";
       
   161 by (div_undefined_case_tac "n=0" 1);
       
   162 by (induct_thm_tac nat_less_induct "m" 1);
       
   163 by (stac mod_if 1);
       
   164 by (ALLGOALS (asm_simp_tac 
       
   165 	      (simpset() addsimps [add_assoc, div_geq,
       
   166 				   add_diff_inverse, diff_less])));
       
   167 qed "mod_div_equality";
       
   168 
       
   169 (* a simple rearrangement of mod_div_equality: *)
       
   170 Goal "(n::nat) * (m div n) = m - (m mod n)";
       
   171 by (cut_inst_tac [("m","m"),("n","n")] mod_div_equality 1);
       
   172 by (full_simp_tac (simpset() addsimps mult_ac) 1);
       
   173 by (arith_tac 1);
       
   174 qed "mult_div_cancel";
       
   175 
       
   176 Goal "0<n ==> m mod n < (n::nat)";
       
   177 by (induct_thm_tac nat_less_induct "m" 1);
       
   178 by (case_tac "na<n" 1);
       
   179 (*case n le na*)
       
   180 by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 2);
       
   181 (*case na<n*)
       
   182 by (Asm_simp_tac 1);
       
   183 qed "mod_less_divisor";
       
   184 Addsimps [mod_less_divisor];
       
   185 
       
   186 (*** More division laws ***)
       
   187 
       
   188 Goal "0<n ==> (m*n) div n = (m::nat)";
       
   189 by (cut_inst_tac [("m", "m*n"),("n","n")] mod_div_equality 1);
       
   190 by Auto_tac;
       
   191 qed "div_mult_self_is_m";
       
   192 
       
   193 Goal "0<n ==> (n*m) div n = (m::nat)";
       
   194 by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self_is_m]) 1);
       
   195 qed "div_mult_self1_is_m";
       
   196 Addsimps [div_mult_self_is_m, div_mult_self1_is_m];
       
   197 
       
   198 (*mod_mult_distrib2 above is the counterpart for remainder*)
       
   199 
       
   200 
       
   201 (*** Proving facts about div and mod using quorem ***)
       
   202 
       
   203 Goal "[| b*q' + r'  <= b*q + r;  0 < b;  r < b |] \
       
   204 \     ==> q' <= (q::nat)";
       
   205 by (rtac leI 1); 
       
   206 by (stac less_iff_Suc_add 1);
       
   207 by (auto_tac (claset(), simpset() addsimps [add_mult_distrib2]));   
       
   208 qed "unique_quotient_lemma";
       
   209 
       
   210 Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |] \
       
   211 \     ==> q = q'";
       
   212 by (asm_full_simp_tac 
       
   213     (simpset() addsimps split_ifs @ [Divides.quorem_def]) 1);
       
   214 by Auto_tac;  
       
   215 by (REPEAT 
       
   216     (blast_tac (claset() addIs [order_antisym]
       
   217 			 addDs [order_eq_refl RS unique_quotient_lemma, 
       
   218 				sym]) 1));
       
   219 qed "unique_quotient";
       
   220 
       
   221 Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |] \
       
   222 \     ==> r = r'";
       
   223 by (subgoal_tac "q = q'" 1);
       
   224 by (blast_tac (claset() addIs [unique_quotient]) 2);
       
   225 by (asm_full_simp_tac (simpset() addsimps [Divides.quorem_def]) 1);
       
   226 qed "unique_remainder";
       
   227 
       
   228 Goal "0 < b ==> quorem ((a, b), (a div b, a mod b))";
       
   229 by (cut_inst_tac [("m","a"),("n","b")] mod_div_equality 1);
       
   230 by (auto_tac
       
   231     (claset() addEs [sym],
       
   232      simpset() addsimps mult_ac@[Divides.quorem_def]));
       
   233 qed "quorem_div_mod";
       
   234 
       
   235 Goal "[| quorem((a,b),(q,r));  0 < b |] ==> a div b = q";
       
   236 by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_quotient]) 1);
       
   237 qed "quorem_div";
       
   238 
       
   239 Goal "[| quorem((a,b),(q,r));  0 < b |] ==> a mod b = r";
       
   240 by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_remainder]) 1);
       
   241 qed "quorem_mod";
       
   242 
       
   243 (** A dividend of zero **)
       
   244 
       
   245 Goal "0 div m = (0::nat)";
       
   246 by (div_undefined_case_tac "m=0" 1);
       
   247 by (Asm_simp_tac 1);
       
   248 qed "div_0"; 
       
   249 
       
   250 Goal "0 mod m = (0::nat)";
       
   251 by (div_undefined_case_tac "m=0" 1);
       
   252 by (Asm_simp_tac 1);
       
   253 qed "mod_0"; 
       
   254 Addsimps [div_0, mod_0];
       
   255 
       
   256 (** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
       
   257 
       
   258 Goal "[| quorem((b,c),(q,r));  0 < c |] \
       
   259 \     ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))";
       
   260 by (cut_inst_tac [("m", "a*r"), ("n","c")] mod_div_equality 1);
       
   261 by (auto_tac
       
   262     (claset(),
       
   263      simpset() addsimps split_ifs@mult_ac@
       
   264                         [Divides.quorem_def, add_mult_distrib2]));
       
   265 val lemma = result();
       
   266 
       
   267 Goal "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)";
       
   268 by (div_undefined_case_tac "c = 0" 1);
       
   269 by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
       
   270 qed "div_mult1_eq";
       
   271 
       
   272 Goal "(a*b) mod c = a*(b mod c) mod (c::nat)";
       
   273 by (div_undefined_case_tac "c = 0" 1);
       
   274 by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
       
   275 qed "mod_mult1_eq";
       
   276 
       
   277 Goal "(a*b) mod (c::nat) = ((a mod c) * b) mod c";
       
   278 by (rtac trans 1);
       
   279 by (res_inst_tac [("s","b*a mod c")] trans 1);
       
   280 by (rtac mod_mult1_eq 2);
       
   281 by (ALLGOALS (simp_tac (simpset() addsimps [mult_commute])));
       
   282 qed "mod_mult1_eq'";
       
   283 
       
   284 Goal "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c";
       
   285 by (rtac (mod_mult1_eq' RS trans) 1);
       
   286 by (rtac mod_mult1_eq 1);
       
   287 qed "mod_mult_distrib_mod";
       
   288 
       
   289 (** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
       
   290 
       
   291 Goal "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  0 < c |] \
       
   292 \     ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))";
       
   293 by (cut_inst_tac [("m", "ar+br"), ("n","c")] mod_div_equality 1);
       
   294 by (auto_tac
       
   295     (claset(),
       
   296      simpset() addsimps split_ifs@mult_ac@
       
   297                         [Divides.quorem_def, add_mult_distrib2]));
       
   298 val lemma = result();
       
   299 
       
   300 (*NOT suitable for rewriting: the RHS has an instance of the LHS*)
       
   301 Goal "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)";
       
   302 by (div_undefined_case_tac "c = 0" 1);
       
   303 by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
       
   304 			       MRS lemma RS quorem_div]) 1);
       
   305 qed "div_add1_eq";
       
   306 
       
   307 Goal "(a+b) mod (c::nat) = (a mod c + b mod c) mod c";
       
   308 by (div_undefined_case_tac "c = 0" 1);
       
   309 by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
       
   310 			       MRS lemma RS quorem_mod]) 1);
       
   311 qed "mod_add1_eq";
       
   312 
       
   313 
       
   314 (*** proving  a div (b*c) = (a div b) div c ***)
       
   315 
       
   316 (** first, a lemma to bound the remainder **)
       
   317 
       
   318 Goal "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c";
       
   319 by (cut_inst_tac [("m","q"),("n","c")] mod_less_divisor 1);
       
   320 by (dres_inst_tac [("m","q mod c")] less_imp_Suc_add 2); 
       
   321 by Auto_tac;  
       
   322 by (eres_inst_tac [("P","%x. ?lhs < ?rhs x")] ssubst 1); 
       
   323 by (asm_simp_tac (simpset() addsimps [add_mult_distrib2]) 1);
       
   324 val mod_lemma = result();
       
   325 
       
   326 Goal "[| quorem ((a,b), (q,r));  0 < b;  0 < c |] \
       
   327 \     ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))";
       
   328 by (cut_inst_tac [("m", "q"), ("n","c")] mod_div_equality 1);
       
   329 by (auto_tac  
       
   330     (claset(),
       
   331      simpset() addsimps mult_ac@
       
   332                         [Divides.quorem_def, add_mult_distrib2 RS sym,
       
   333 			 mod_lemma]));
       
   334 val lemma = result();
       
   335 
       
   336 Goal "a div (b*c) = (a div b) div (c::nat)";
       
   337 by (div_undefined_case_tac "b=0" 1);
       
   338 by (div_undefined_case_tac "c=0" 1);
       
   339 by (force_tac (claset(),
       
   340 	       simpset() addsimps [quorem_div_mod RS lemma RS quorem_div]) 1);
       
   341 qed "div_mult2_eq";
       
   342 
       
   343 Goal "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)";
       
   344 by (div_undefined_case_tac "b=0" 1);
       
   345 by (div_undefined_case_tac "c=0" 1);
       
   346 by (cut_inst_tac [("m", "a"), ("n","b")] mod_div_equality 1);
       
   347 by (auto_tac (claset(),
       
   348 	       simpset() addsimps [mult_commute, 
       
   349 				   quorem_div_mod RS lemma RS quorem_mod]));
       
   350 qed "mod_mult2_eq";
       
   351 
       
   352 
       
   353 (*** Cancellation of common factors in "div" ***)
       
   354 
       
   355 Goal "[| (0::nat) < b;  0 < c |] ==> (c*a) div (c*b) = a div b";
       
   356 by (stac div_mult2_eq 1);
       
   357 by Auto_tac;
       
   358 val lemma1 = result();
       
   359 
       
   360 Goal "(0::nat) < c ==> (c*a) div (c*b) = a div b";
       
   361 by (div_undefined_case_tac "b = 0" 1);
       
   362 by (auto_tac
       
   363     (claset(), 
       
   364      simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff, 
       
   365 			 lemma1, lemma2]));
       
   366 qed "div_mult_mult1";
       
   367 
       
   368 Goal "(0::nat) < c ==> (a*c) div (b*c) = a div b";
       
   369 by (dtac div_mult_mult1 1);
       
   370 by (auto_tac (claset(), simpset() addsimps [mult_commute]));
       
   371 qed "div_mult_mult2";
       
   372 
       
   373 Addsimps [div_mult_mult1, div_mult_mult2];
       
   374 
       
   375 
       
   376 (*** Distribution of factors over "mod"
       
   377 
       
   378 Could prove these as in Integ/IntDiv.ML, but we already have
       
   379 mod_mult_distrib and mod_mult_distrib2 above!
       
   380 
       
   381 Goal "(c*a) mod (c*b) = (c::nat) * (a mod b)";
       
   382 qed "mod_mult_mult1";
       
   383 
       
   384 Goal "(a*c) mod (b*c) = (a mod b) * (c::nat)";
       
   385 qed "mod_mult_mult2";
       
   386  ***)
       
   387 
       
   388 (*** Further facts about div and mod ***)
       
   389 
       
   390 Goal "m div Suc 0 = m";
       
   391 by (induct_tac "m" 1);
       
   392 by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_geq])));
       
   393 qed "div_1";
       
   394 Addsimps [div_1];
       
   395 
       
   396 Goal "0<n ==> n div n = (1::nat)";
       
   397 by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
       
   398 qed "div_self";
       
   399 Addsimps [div_self];
       
   400 
       
   401 Goal "0<n ==> (m+n) div n = Suc (m div n)";
       
   402 by (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n)" 1);
       
   403 by (stac (div_geq RS sym) 2);
       
   404 by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute])));
       
   405 qed "div_add_self2";
       
   406 
       
   407 Goal "0<n ==> (n+m) div n = Suc (m div n)";
       
   408 by (asm_simp_tac (simpset() addsimps [add_commute, div_add_self2]) 1);
       
   409 qed "div_add_self1";
       
   410 
       
   411 Goal "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n";
       
   412 by (stac div_add1_eq 1); 
       
   413 by (stac div_mult1_eq 1); 
       
   414 by (Asm_simp_tac 1); 
       
   415 qed "div_mult_self1";
       
   416 
       
   417 Goal "0<n ==> (m + n*k) div n = k + m div (n::nat)";
       
   418 by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self1]) 1);
       
   419 qed "div_mult_self2";
       
   420 
       
   421 Addsimps [div_mult_self1, div_mult_self2];
       
   422 
       
   423 (* Monotonicity of div in first argument *)
       
   424 Goal "ALL m::nat. m <= n --> (m div k) <= (n div k)";
       
   425 by (div_undefined_case_tac "k=0" 1);
       
   426 by (induct_thm_tac nat_less_induct "n" 1);
       
   427 by (Clarify_tac 1);
       
   428 by (case_tac "n<k" 1);
       
   429 (* 1  case n<k *)
       
   430 by (Asm_simp_tac 1);
       
   431 (* 2  case n >= k *)
       
   432 by (case_tac "m<k" 1);
       
   433 (* 2.1  case m<k *)
       
   434 by (Asm_simp_tac 1);
       
   435 (* 2.2  case m>=k *)
       
   436 by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1);
       
   437 qed_spec_mp "div_le_mono";
       
   438 
       
   439 (* Antimonotonicity of div in second argument *)
       
   440 Goal "!!m::nat. [| 0<m; m<=n |] ==> (k div n) <= (k div m)";
       
   441 by (subgoal_tac "0<n" 1);
       
   442  by (Asm_simp_tac 2);
       
   443 by (induct_thm_tac nat_less_induct "k" 1);
       
   444 by (rename_tac "k" 1);
       
   445 by (case_tac "k<n" 1);
       
   446  by (Asm_simp_tac 1);
       
   447 by (subgoal_tac "~(k<m)" 1);
       
   448  by (Asm_simp_tac 2);
       
   449 by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
       
   450 by (subgoal_tac "(k-n) div n <= (k-m) div n" 1);
       
   451  by (REPEAT (ares_tac [div_le_mono,diff_le_mono2] 2));
       
   452 by (rtac le_trans 1);
       
   453 by (Asm_simp_tac 1);
       
   454 by (asm_simp_tac (simpset() addsimps [diff_less]) 1);
       
   455 qed "div_le_mono2";
       
   456 
       
   457 Goal "m div n <= (m::nat)";
       
   458 by (div_undefined_case_tac "n=0" 1);
       
   459 by (subgoal_tac "m div n <= m div 1" 1);
       
   460 by (Asm_full_simp_tac 1);
       
   461 by (rtac div_le_mono2 1);
       
   462 by (ALLGOALS Asm_simp_tac);
       
   463 qed "div_le_dividend";
       
   464 Addsimps [div_le_dividend];
       
   465 
       
   466 (* Similar for "less than" *)
       
   467 Goal "!!n::nat. 1<n ==> (0 < m) --> (m div n < m)";
       
   468 by (induct_thm_tac nat_less_induct "m" 1);
       
   469 by (rename_tac "m" 1);
       
   470 by (case_tac "m<n" 1);
       
   471  by (Asm_full_simp_tac 1);
       
   472 by (subgoal_tac "0<n" 1);
       
   473  by (Asm_simp_tac 2);
       
   474 by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1);
       
   475 by (case_tac "n<m" 1);
       
   476  by (subgoal_tac "(m-n) div n < (m-n)" 1);
       
   477   by (REPEAT (ares_tac [impI,less_trans_Suc] 1));
       
   478   by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
       
   479  by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
       
   480 (* case n=m *)
       
   481 by (subgoal_tac "m=n" 1);
       
   482  by (Asm_simp_tac 2);
       
   483 by (Asm_simp_tac 1);
       
   484 qed_spec_mp "div_less_dividend";
       
   485 Addsimps [div_less_dividend];
       
   486 
       
   487 (*** Further facts about mod (mainly for the mutilated chess board ***)
       
   488 
       
   489 Goal "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
       
   490 by (div_undefined_case_tac "n=0" 1);
       
   491 by (induct_thm_tac nat_less_induct "m" 1);
       
   492 by (case_tac "Suc(na)<n" 1);
       
   493 (* case Suc(na) < n *)
       
   494 by (forward_tac [lessI RS less_trans] 1 
       
   495     THEN asm_simp_tac (simpset() addsimps [less_not_refl3]) 1);
       
   496 (* case n <= Suc(na) *)
       
   497 by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, le_Suc_eq, 
       
   498 					   mod_geq]) 1);
       
   499 by (auto_tac (claset(), 
       
   500 	      simpset() addsimps [Suc_diff_le, diff_less, le_mod_geq]));
       
   501 qed "mod_Suc";
       
   502 
       
   503 
       
   504 (************************************************)
       
   505 (** Divides Relation                           **)
       
   506 (************************************************)
       
   507 
       
   508 Goalw [dvd_def] "n = m * k ==> m dvd n";
       
   509 by (Blast_tac 1); 
       
   510 qed "dvdI";
       
   511 
       
   512 Goalw [dvd_def] "!!P. [|m dvd n;  !!k. n = m*k ==> P|] ==> P";
       
   513 by (Blast_tac 1); 
       
   514 qed "dvdE";
       
   515 
       
   516 Goalw [dvd_def] "m dvd (0::nat)";
       
   517 by (blast_tac (claset() addIs [mult_0_right RS sym]) 1);
       
   518 qed "dvd_0_right";
       
   519 AddIffs [dvd_0_right];
       
   520 
       
   521 Goalw [dvd_def] "0 dvd m ==> m = (0::nat)";
       
   522 by Auto_tac;
       
   523 qed "dvd_0_left";
       
   524 
       
   525 Goal "(0 dvd (m::nat)) = (m = 0)";
       
   526 by (blast_tac (claset() addIs [dvd_0_left]) 1); 
       
   527 qed "dvd_0_left_iff";
       
   528 AddIffs [dvd_0_left_iff];
       
   529 
       
   530 Goalw [dvd_def] "Suc 0 dvd k";
       
   531 by (Simp_tac 1);
       
   532 qed "dvd_1_left";
       
   533 AddIffs [dvd_1_left];
       
   534 
       
   535 Goal "(m dvd Suc 0) = (m = Suc 0)";
       
   536 by (simp_tac (simpset() addsimps [dvd_def]) 1); 
       
   537 qed "dvd_1_iff_1";
       
   538 Addsimps [dvd_1_iff_1];
       
   539 
       
   540 Goalw [dvd_def] "m dvd (m::nat)";
       
   541 by (blast_tac (claset() addIs [mult_1_right RS sym]) 1);
       
   542 qed "dvd_refl";
       
   543 Addsimps [dvd_refl];
       
   544 
       
   545 Goalw [dvd_def] "[| m dvd n; n dvd p |] ==> m dvd (p::nat)";
       
   546 by (blast_tac (claset() addIs [mult_assoc] ) 1);
       
   547 qed "dvd_trans";
       
   548 
       
   549 Goalw [dvd_def] "[| m dvd n; n dvd m |] ==> m = (n::nat)";
       
   550 by (force_tac (claset() addDs [mult_eq_self_implies_10],
       
   551 	       simpset() addsimps [mult_assoc, mult_eq_1_iff]) 1);
       
   552 qed "dvd_anti_sym";
       
   553 
       
   554 Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)";
       
   555 by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1);
       
   556 qed "dvd_add";
       
   557 
       
   558 Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)";
       
   559 by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1);
       
   560 qed "dvd_diff";
       
   561 
       
   562 Goal "[| k dvd m-n; k dvd n; n<=m |] ==> k dvd (m::nat)";
       
   563 by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1);
       
   564 by (blast_tac (claset() addIs [dvd_add]) 1);
       
   565 qed "dvd_diffD";
       
   566 
       
   567 Goal "[| k dvd m-n; k dvd m; n<=m |] ==> k dvd (n::nat)";
       
   568 by (dres_inst_tac [("m","m")] dvd_diff 1);
       
   569 by Auto_tac;  
       
   570 qed "dvd_diffD1";
       
   571 
       
   572 Goalw [dvd_def] "k dvd n ==> k dvd (m*n :: nat)";
       
   573 by (blast_tac (claset() addIs [mult_left_commute]) 1);
       
   574 qed "dvd_mult";
       
   575 
       
   576 Goal "k dvd m ==> k dvd (m*n :: nat)";
       
   577 by (stac mult_commute 1);
       
   578 by (etac dvd_mult 1);
       
   579 qed "dvd_mult2";
       
   580 
       
   581 (* k dvd (m*k) *)
       
   582 AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2];
       
   583 
       
   584 Goal "(k dvd n + k) = (k dvd (n::nat))";
       
   585 by (rtac iffI 1);
       
   586 by (etac dvd_add 2);
       
   587 by (rtac dvd_refl 2);
       
   588 by (subgoal_tac "n = (n+k)-k" 1);
       
   589 by  (Simp_tac 2);
       
   590 by (etac ssubst 1);
       
   591 by (etac dvd_diff 1);
       
   592 by (rtac dvd_refl 1);
       
   593 qed "dvd_reduce";
       
   594 
       
   595 Goalw [dvd_def] "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n";
       
   596 by (div_undefined_case_tac "n=0" 1);
       
   597 by Auto_tac; 
       
   598 by (blast_tac (claset() addIs [mod_mult_distrib2 RS sym]) 1);  
       
   599 qed "dvd_mod";
       
   600 
       
   601 Goal "[| (k::nat) dvd m mod n;  k dvd n |] ==> k dvd m";
       
   602 by (subgoal_tac "k dvd (m div n)*n + m mod n" 1);
       
   603 by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2);
       
   604 by (asm_full_simp_tac (simpset() addsimps [mod_div_equality]) 1);
       
   605 qed "dvd_mod_imp_dvd";
       
   606 
       
   607 Goal "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)";
       
   608 by (blast_tac (claset() addIs [dvd_mod_imp_dvd, dvd_mod]) 1); 
       
   609 qed "dvd_mod_iff";
       
   610 
       
   611 Goalw [dvd_def]  "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n";
       
   612 by (etac exE 1);
       
   613 by (asm_full_simp_tac (simpset() addsimps mult_ac) 1);
       
   614 qed "dvd_mult_cancel";
       
   615 
       
   616 Goal "0<m ==> (m*n dvd m) = (n = (1::nat))";
       
   617 by Auto_tac;  
       
   618 by (subgoal_tac "m*n dvd m*1" 1);
       
   619 by (dtac dvd_mult_cancel 1); 
       
   620 by Auto_tac;  
       
   621 qed "dvd_mult_cancel1";
       
   622 
       
   623 Goal "0<m ==> (n*m dvd m) = (n = (1::nat))";
       
   624 by (stac mult_commute 1); 
       
   625 by (etac dvd_mult_cancel1 1); 
       
   626 qed "dvd_mult_cancel2";
       
   627 
       
   628 Goalw [dvd_def] "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)";
       
   629 by (Clarify_tac 1);
       
   630 by (res_inst_tac [("x","k*ka")] exI 1);
       
   631 by (asm_simp_tac (simpset() addsimps mult_ac) 1);
       
   632 qed "mult_dvd_mono";
       
   633 
       
   634 Goalw [dvd_def] "(i*j :: nat) dvd k ==> i dvd k";
       
   635 by (full_simp_tac (simpset() addsimps [mult_assoc]) 1);
       
   636 by (Blast_tac 1);
       
   637 qed "dvd_mult_left";
       
   638 
       
   639 Goalw [dvd_def] "(i*j :: nat) dvd k ==> j dvd k";
       
   640 by (Clarify_tac 1);
       
   641 by (res_inst_tac [("x","i*k")] exI 1);
       
   642 by (simp_tac (simpset() addsimps mult_ac) 1);
       
   643 qed "dvd_mult_right";
       
   644 
       
   645 Goalw [dvd_def] "[| k dvd n; 0 < n |] ==> k <= (n::nat)";
       
   646 by (Clarify_tac 1);
       
   647 by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff])));
       
   648 by (etac conjE 1);
       
   649 by (rtac le_trans 1);
       
   650 by (rtac (le_refl RS mult_le_mono) 2);
       
   651 by (etac Suc_leI 2);
       
   652 by (Simp_tac 1);
       
   653 qed "dvd_imp_le";
       
   654 
       
   655 Goalw [dvd_def] "!!k::nat. (k dvd n) = (n mod k = 0)";
       
   656 by (div_undefined_case_tac "k=0" 1);
       
   657 by Safe_tac;
       
   658 by (asm_simp_tac (simpset() addsimps [mult_commute]) 1);
       
   659 by (res_inst_tac [("t","n"),("n1","k")] (mod_div_equality RS subst) 1);
       
   660 by (stac mult_commute 1);
       
   661 by (Asm_simp_tac 1);
       
   662 qed "dvd_eq_mod_eq_0";
       
   663 
       
   664 Goal "n dvd m ==> n * (m div n) = (m::nat)";
       
   665 by (subgoal_tac "m mod n = 0" 1);
       
   666  by (asm_full_simp_tac (simpset() addsimps [mult_div_cancel]) 1);
       
   667 by (asm_full_simp_tac (HOL_basic_ss addsimps [dvd_eq_mod_eq_0]) 1);
       
   668 qed "dvd_mult_div_cancel";
       
   669 
       
   670 Goal "(m mod d = 0) = (EX q::nat. m = d*q)";
       
   671 by (auto_tac (claset(), 
       
   672      simpset() addsimps [dvd_eq_mod_eq_0 RS sym, dvd_def]));  
       
   673 qed "mod_eq_0_iff";
       
   674 AddSDs [mod_eq_0_iff RS iffD1];
       
   675 
       
   676 (*Loses information, namely we also have r<d provided d is nonzero*)
       
   677 Goal "(m mod d = r) ==> EX q::nat. m = r + q*d";
       
   678 by (cut_inst_tac [("m","m")] mod_div_equality 1);
       
   679 by (full_simp_tac (simpset() addsimps add_ac) 1); 
       
   680 by (blast_tac (claset() addIs [sym]) 1); 
       
   681 qed "mod_eqD";
       
   682