src/HOL/NumberTheory/Fib.ML
changeset 9944 2a705d1af4dc
child 10965 cd89ce2795ab
equal deleted inserted replaced
9943:55c82decf3f4 9944:2a705d1af4dc
       
     1 (*  Title:      HOL/ex/Fib
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson
       
     4     Copyright   1997  University of Cambridge
       
     5 
       
     6 Fibonacci numbers: proofs of laws taken from
       
     7 
       
     8   R. L. Graham, D. E. Knuth, O. Patashnik.
       
     9   Concrete Mathematics.
       
    10   (Addison-Wesley, 1989)
       
    11 *)
       
    12 
       
    13 
       
    14 (** The difficulty in these proofs is to ensure that the induction hypotheses
       
    15     are applied before the definition of "fib".  Towards this end, the 
       
    16     "fib" equations are not added to the simpset and are applied very 
       
    17     selectively at first.
       
    18 **)
       
    19 
       
    20 Delsimps fib.Suc_Suc;
       
    21 
       
    22 val [fib_Suc_Suc] = fib.Suc_Suc;
       
    23 val fib_Suc3 = read_instantiate [("x", "(Suc ?n)")] fib_Suc_Suc;
       
    24 
       
    25 (*Concrete Mathematics, page 280*)
       
    26 Goal "fib (Suc (n + k)) = fib(Suc k) * fib(Suc n) + fib k * fib n";
       
    27 by (induct_thm_tac fib.induct "n" 1);
       
    28 (*Simplify the LHS just enough to apply the induction hypotheses*)
       
    29 by (asm_full_simp_tac
       
    30     (simpset() addsimps [inst "x" "Suc(?m+?n)" fib_Suc_Suc]) 3);
       
    31 by (ALLGOALS 
       
    32     (asm_simp_tac (simpset() addsimps 
       
    33 		   ([fib_Suc_Suc, add_mult_distrib, add_mult_distrib2]))));
       
    34 qed "fib_add";
       
    35 
       
    36 
       
    37 Goal "fib (Suc n) ~= 0";
       
    38 by (induct_thm_tac fib.induct "n" 1);
       
    39 by (ALLGOALS (asm_simp_tac (simpset() addsimps [fib_Suc_Suc])));
       
    40 qed "fib_Suc_neq_0";
       
    41 
       
    42 (* Also add  0 < fib (Suc n) *)
       
    43 Addsimps [fib_Suc_neq_0, [neq0_conv, fib_Suc_neq_0] MRS iffD1];
       
    44 
       
    45 Goal "0<n ==> 0 < fib n";
       
    46 by (rtac (not0_implies_Suc RS exE) 1);
       
    47 by Auto_tac;
       
    48 qed "fib_gr_0";
       
    49 
       
    50 (*Concrete Mathematics, page 278: Cassini's identity.
       
    51   It is much easier to prove using integers!*)
       
    52 Goal "int (fib (Suc (Suc n)) * fib n) = \
       
    53 \     (if n mod 2 = 0 then int (fib(Suc n) * fib(Suc n)) - #1 \
       
    54 \                     else int (fib(Suc n) * fib(Suc n)) + #1)";
       
    55 by (induct_thm_tac fib.induct "n" 1);
       
    56 by (simp_tac (simpset() addsimps [fib_Suc_Suc, mod_Suc]) 2);
       
    57 by (simp_tac (simpset() addsimps [fib_Suc_Suc]) 1);
       
    58 by (asm_full_simp_tac
       
    59      (simpset() addsimps [fib_Suc_Suc, add_mult_distrib, add_mult_distrib2, 
       
    60 			  mod_Suc, zmult_int RS sym] @ zmult_ac) 1);
       
    61 qed "fib_Cassini";
       
    62 
       
    63 
       
    64 
       
    65 (** Towards Law 6.111 of Concrete Mathematics **)
       
    66 
       
    67 val gcd_induct = thm "gcd_induct";
       
    68 val gcd_commute = thm "gcd_commute";
       
    69 val gcd_add2 = thm "gcd_add2";
       
    70 val gcd_non_0 = thm "gcd_non_0";
       
    71 val gcd_mult_cancel = thm "gcd_mult_cancel";
       
    72 
       
    73 
       
    74 Goal "gcd(fib n, fib (Suc n)) = 1";
       
    75 by (induct_thm_tac fib.induct "n" 1);
       
    76 by (asm_simp_tac (simpset() addsimps [gcd_commute, fib_Suc3]) 3);
       
    77 by (ALLGOALS (simp_tac (simpset() addsimps [fib_Suc_Suc])));
       
    78 qed "gcd_fib_Suc_eq_1"; 
       
    79 
       
    80 val gcd_fib_commute = 
       
    81     read_instantiate_sg (sign_of thy) [("m", "fib m")] gcd_commute;
       
    82 
       
    83 Goal "gcd(fib m, fib (n+m)) = gcd(fib m, fib n)";
       
    84 by (simp_tac (simpset() addsimps [gcd_fib_commute]) 1);
       
    85 by (case_tac "m=0" 1);
       
    86 by (Asm_simp_tac 1);
       
    87 by (clarify_tac (claset() addSDs [not0_implies_Suc]) 1);
       
    88 by (simp_tac (simpset() addsimps [fib_add]) 1);
       
    89 by (asm_simp_tac (simpset() addsimps [add_commute, gcd_non_0]) 1);
       
    90 by (asm_simp_tac (simpset() addsimps [gcd_non_0 RS sym]) 1);
       
    91 by (asm_simp_tac (simpset() addsimps [gcd_fib_Suc_eq_1, gcd_mult_cancel]) 1);
       
    92 qed "gcd_fib_add";
       
    93 
       
    94 Goal "m <= n ==> gcd(fib m, fib (n-m)) = gcd(fib m, fib n)";
       
    95 by (rtac (gcd_fib_add RS sym RS trans) 1);
       
    96 by (Asm_simp_tac 1);
       
    97 qed "gcd_fib_diff";
       
    98 
       
    99 Goal "0<m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)";
       
   100 by (induct_thm_tac nat_less_induct "n" 1);
       
   101 by (stac mod_if 1);
       
   102 by (Asm_simp_tac 1);
       
   103 by (asm_simp_tac (simpset() addsimps [gcd_fib_diff, mod_geq, 
       
   104 				      not_less_iff_le, diff_less]) 1);
       
   105 qed "gcd_fib_mod";
       
   106 
       
   107 (*Law 6.111*)
       
   108 Goal "fib(gcd(m,n)) = gcd(fib m, fib n)";
       
   109 by (induct_thm_tac gcd_induct "m n" 1);
       
   110 by (Asm_simp_tac 1);
       
   111 by (asm_full_simp_tac (simpset() addsimps [gcd_non_0]) 1);
       
   112 by (asm_full_simp_tac (simpset() addsimps [gcd_commute, gcd_fib_mod]) 1);
       
   113 qed "fib_gcd";