src/ZF/Finite.thy
changeset 46953 2b6e55924af3
parent 46821 ff6b0c1087f2
child 58871 c399ae4b836f
equal deleted inserted replaced
46952:5e1bcfdcb175 46953:2b6e55924af3
     1 (*  Title:      ZF/Finite.thy
     1 (*  Title:      ZF/Finite.thy
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Copyright   1994  University of Cambridge
     3     Copyright   1994  University of Cambridge
     4 
     4 
     5 prove:  b: Fin(A) ==> inj(b,b) \<subseteq> surj(b,b)
     5 prove:  b \<in> Fin(A) ==> inj(b,b) \<subseteq> surj(b,b)
     6 *)
     6 *)
     7 
     7 
     8 header{*Finite Powerset Operator and Finite Function Space*}
     8 header{*Finite Powerset Operator and Finite Function Space*}
     9 
     9 
    10 theory Finite imports Inductive_ZF Epsilon Nat_ZF begin
    10 theory Finite imports Inductive_ZF Epsilon Nat_ZF begin
    23 
    23 
    24 inductive
    24 inductive
    25   domains   "Fin(A)" \<subseteq> "Pow(A)"
    25   domains   "Fin(A)" \<subseteq> "Pow(A)"
    26   intros
    26   intros
    27     emptyI:  "0 \<in> Fin(A)"
    27     emptyI:  "0 \<in> Fin(A)"
    28     consI:   "[| a: A;  b: Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
    28     consI:   "[| a \<in> A;  b \<in> Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
    29   type_intros  empty_subsetI cons_subsetI PowI
    29   type_intros  empty_subsetI cons_subsetI PowI
    30   type_elims   PowD [elim_format]
    30   type_elims   PowD [elim_format]
    31 
    31 
    32 inductive
    32 inductive
    33   domains   "FiniteFun(A,B)" \<subseteq> "Fin(A*B)"
    33   domains   "FiniteFun(A,B)" \<subseteq> "Fin(A*B)"
    34   intros
    34   intros
    35     emptyI:  "0 \<in> A -||> B"
    35     emptyI:  "0 \<in> A -||> B"
    36     consI:   "[| a: A;  b: B;  h: A -||> B;  a \<notin> domain(h) |]
    36     consI:   "[| a \<in> A;  b \<in> B;  h \<in> A -||> B;  a \<notin> domain(h) |]
    37               ==> cons(<a,b>,h) \<in> A -||> B"
    37               ==> cons(<a,b>,h) \<in> A -||> B"
    38   type_intros Fin.intros
    38   type_intros Fin.intros
    39 
    39 
    40 
    40 
    41 subsection {* Finite Powerset Operator *}
    41 subsection {* Finite Powerset Operator *}
    52 
    52 
    53 (** Induction on finite sets **)
    53 (** Induction on finite sets **)
    54 
    54 
    55 (*Discharging @{term"x\<notin>y"} entails extra work*)
    55 (*Discharging @{term"x\<notin>y"} entails extra work*)
    56 lemma Fin_induct [case_names 0 cons, induct set: Fin]:
    56 lemma Fin_induct [case_names 0 cons, induct set: Fin]:
    57     "[| b: Fin(A);
    57     "[| b \<in> Fin(A);
    58         P(0);
    58         P(0);
    59         !!x y. [| x: A;  y: Fin(A);  x\<notin>y;  P(y) |] ==> P(cons(x,y))
    59         !!x y. [| x \<in> A;  y \<in> Fin(A);  x\<notin>y;  P(y) |] ==> P(cons(x,y))
    60      |] ==> P(b)"
    60      |] ==> P(b)"
    61 apply (erule Fin.induct, simp)
    61 apply (erule Fin.induct, simp)
    62 apply (case_tac "a:b")
    62 apply (case_tac "a \<in> b")
    63  apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*)
    63  apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*)
    64 apply simp
    64 apply simp
    65 done
    65 done
    66 
    66 
    67 
    67 
    70 
    70 
    71 lemma Fin_0: "Fin(0) = {0}"
    71 lemma Fin_0: "Fin(0) = {0}"
    72 by (blast intro: Fin.emptyI dest: FinD)
    72 by (blast intro: Fin.emptyI dest: FinD)
    73 
    73 
    74 (*The union of two finite sets is finite.*)
    74 (*The union of two finite sets is finite.*)
    75 lemma Fin_UnI [simp]: "[| b: Fin(A);  c: Fin(A) |] ==> b \<union> c \<in> Fin(A)"
    75 lemma Fin_UnI [simp]: "[| b \<in> Fin(A);  c \<in> Fin(A) |] ==> b \<union> c \<in> Fin(A)"
    76 apply (erule Fin_induct)
    76 apply (erule Fin_induct)
    77 apply (simp_all add: Un_cons)
    77 apply (simp_all add: Un_cons)
    78 done
    78 done
    79 
    79 
    80 
    80 
    81 (*The union of a set of finite sets is finite.*)
    81 (*The union of a set of finite sets is finite.*)
    82 lemma Fin_UnionI: "C \<in> Fin(Fin(A)) ==> \<Union>(C) \<in> Fin(A)"
    82 lemma Fin_UnionI: "C \<in> Fin(Fin(A)) ==> \<Union>(C) \<in> Fin(A)"
    83 by (erule Fin_induct, simp_all)
    83 by (erule Fin_induct, simp_all)
    84 
    84 
    85 (*Every subset of a finite set is finite.*)
    85 (*Every subset of a finite set is finite.*)
    86 lemma Fin_subset_lemma [rule_format]: "b: Fin(A) ==> \<forall>z. z<=b \<longrightarrow> z: Fin(A)"
    86 lemma Fin_subset_lemma [rule_format]: "b \<in> Fin(A) ==> \<forall>z. z<=b \<longrightarrow> z \<in> Fin(A)"
    87 apply (erule Fin_induct)
    87 apply (erule Fin_induct)
    88 apply (simp add: subset_empty_iff)
    88 apply (simp add: subset_empty_iff)
    89 apply (simp add: subset_cons_iff distrib_simps, safe)
    89 apply (simp add: subset_cons_iff distrib_simps, safe)
    90 apply (erule_tac b = z in cons_Diff [THEN subst], simp)
    90 apply (erule_tac b = z in cons_Diff [THEN subst], simp)
    91 done
    91 done
    92 
    92 
    93 lemma Fin_subset: "[| c<=b;  b: Fin(A) |] ==> c: Fin(A)"
    93 lemma Fin_subset: "[| c<=b;  b \<in> Fin(A) |] ==> c \<in> Fin(A)"
    94 by (blast intro: Fin_subset_lemma)
    94 by (blast intro: Fin_subset_lemma)
    95 
    95 
    96 lemma Fin_IntI1 [intro,simp]: "b: Fin(A) ==> b \<inter> c \<in> Fin(A)"
    96 lemma Fin_IntI1 [intro,simp]: "b \<in> Fin(A) ==> b \<inter> c \<in> Fin(A)"
    97 by (blast intro: Fin_subset)
    97 by (blast intro: Fin_subset)
    98 
    98 
    99 lemma Fin_IntI2 [intro,simp]: "c: Fin(A) ==> b \<inter> c \<in> Fin(A)"
    99 lemma Fin_IntI2 [intro,simp]: "c \<in> Fin(A) ==> b \<inter> c \<in> Fin(A)"
   100 by (blast intro: Fin_subset)
   100 by (blast intro: Fin_subset)
   101 
   101 
   102 lemma Fin_0_induct_lemma [rule_format]:
   102 lemma Fin_0_induct_lemma [rule_format]:
   103     "[| c: Fin(A);  b: Fin(A); P(b);
   103     "[| c \<in> Fin(A);  b \<in> Fin(A); P(b);
   104         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
   104         !!x y. [| x \<in> A;  y \<in> Fin(A);  x \<in> y;  P(y) |] ==> P(y-{x})
   105      |] ==> c<=b \<longrightarrow> P(b-c)"
   105      |] ==> c<=b \<longrightarrow> P(b-c)"
   106 apply (erule Fin_induct, simp)
   106 apply (erule Fin_induct, simp)
   107 apply (subst Diff_cons)
   107 apply (subst Diff_cons)
   108 apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset])
   108 apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset])
   109 done
   109 done
   110 
   110 
   111 lemma Fin_0_induct:
   111 lemma Fin_0_induct:
   112     "[| b: Fin(A);
   112     "[| b \<in> Fin(A);
   113         P(b);
   113         P(b);
   114         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
   114         !!x y. [| x \<in> A;  y \<in> Fin(A);  x \<in> y;  P(y) |] ==> P(y-{x})
   115      |] ==> P(0)"
   115      |] ==> P(0)"
   116 apply (rule Diff_cancel [THEN subst])
   116 apply (rule Diff_cancel [THEN subst])
   117 apply (blast intro: Fin_0_induct_lemma)
   117 apply (blast intro: Fin_0_induct_lemma)
   118 done
   118 done
   119 
   119 
   120 (*Functions from a finite ordinal*)
   120 (*Functions from a finite ordinal*)
   121 lemma nat_fun_subset_Fin: "n: nat ==> n->A \<subseteq> Fin(nat*A)"
   121 lemma nat_fun_subset_Fin: "n \<in> nat ==> n->A \<subseteq> Fin(nat*A)"
   122 apply (induct_tac "n")
   122 apply (induct_tac "n")
   123 apply (simp add: subset_iff)
   123 apply (simp add: subset_iff)
   124 apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq])
   124 apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq])
   125 apply (fast intro!: Fin.consI)
   125 apply (fast intro!: Fin.consI)
   126 done
   126 done
   137 done
   137 done
   138 
   138 
   139 lemma FiniteFun_mono1: "A<=B ==> A -||> A  \<subseteq>  B -||> B"
   139 lemma FiniteFun_mono1: "A<=B ==> A -||> A  \<subseteq>  B -||> B"
   140 by (blast dest: FiniteFun_mono)
   140 by (blast dest: FiniteFun_mono)
   141 
   141 
   142 lemma FiniteFun_is_fun: "h: A -||>B ==> h: domain(h) -> B"
   142 lemma FiniteFun_is_fun: "h \<in> A -||>B ==> h \<in> domain(h) -> B"
   143 apply (erule FiniteFun.induct, simp)
   143 apply (erule FiniteFun.induct, simp)
   144 apply (simp add: fun_extend3)
   144 apply (simp add: fun_extend3)
   145 done
   145 done
   146 
   146 
   147 lemma FiniteFun_domain_Fin: "h: A -||>B ==> domain(h) \<in> Fin(A)"
   147 lemma FiniteFun_domain_Fin: "h \<in> A -||>B ==> domain(h) \<in> Fin(A)"
   148 by (erule FiniteFun.induct, simp, simp)
   148 by (erule FiniteFun.induct, simp, simp)
   149 
   149 
   150 lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type]
   150 lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type]
   151 
   151 
   152 (*Every subset of a finite function is a finite function.*)
   152 (*Every subset of a finite function is a finite function.*)
   153 lemma FiniteFun_subset_lemma [rule_format]:
   153 lemma FiniteFun_subset_lemma [rule_format]:
   154      "b: A-||>B ==> \<forall>z. z<=b \<longrightarrow> z: A-||>B"
   154      "b \<in> A-||>B ==> \<forall>z. z<=b \<longrightarrow> z \<in> A-||>B"
   155 apply (erule FiniteFun.induct)
   155 apply (erule FiniteFun.induct)
   156 apply (simp add: subset_empty_iff FiniteFun.intros)
   156 apply (simp add: subset_empty_iff FiniteFun.intros)
   157 apply (simp add: subset_cons_iff distrib_simps, safe)
   157 apply (simp add: subset_cons_iff distrib_simps, safe)
   158 apply (erule_tac b = z in cons_Diff [THEN subst])
   158 apply (erule_tac b = z in cons_Diff [THEN subst])
   159 apply (drule spec [THEN mp], assumption)
   159 apply (drule spec [THEN mp], assumption)
   160 apply (fast intro!: FiniteFun.intros)
   160 apply (fast intro!: FiniteFun.intros)
   161 done
   161 done
   162 
   162 
   163 lemma FiniteFun_subset: "[| c<=b;  b: A-||>B |] ==> c: A-||>B"
   163 lemma FiniteFun_subset: "[| c<=b;  b \<in> A-||>B |] ==> c \<in> A-||>B"
   164 by (blast intro: FiniteFun_subset_lemma)
   164 by (blast intro: FiniteFun_subset_lemma)
   165 
   165 
   166 (** Some further results by Sidi O. Ehmety **)
   166 (** Some further results by Sidi O. Ehmety **)
   167 
   167 
   168 lemma fun_FiniteFunI [rule_format]: "A:Fin(X) ==> \<forall>f. f:A->B \<longrightarrow> f:A-||>B"
   168 lemma fun_FiniteFunI [rule_format]: "A \<in> Fin(X) ==> \<forall>f. f \<in> A->B \<longrightarrow> f \<in> A-||>B"
   169 apply (erule Fin.induct)
   169 apply (erule Fin.induct)
   170  apply (simp add: FiniteFun.intros, clarify)
   170  apply (simp add: FiniteFun.intros, clarify)
   171 apply (case_tac "a:b")
   171 apply (case_tac "a \<in> b")
   172  apply (simp add: cons_absorb)
   172  apply (simp add: cons_absorb)
   173 apply (subgoal_tac "restrict (f,b) \<in> b -||> B")
   173 apply (subgoal_tac "restrict (f,b) \<in> b -||> B")
   174  prefer 2 apply (blast intro: restrict_type2)
   174  prefer 2 apply (blast intro: restrict_type2)
   175 apply (subst fun_cons_restrict_eq, assumption)
   175 apply (subst fun_cons_restrict_eq, assumption)
   176 apply (simp add: restrict_def lam_def)
   176 apply (simp add: restrict_def lam_def)
   177 apply (blast intro: apply_funtype FiniteFun.intros
   177 apply (blast intro: apply_funtype FiniteFun.intros
   178                     FiniteFun_mono [THEN [2] rev_subsetD])
   178                     FiniteFun_mono [THEN [2] rev_subsetD])
   179 done
   179 done
   180 
   180 
   181 lemma lam_FiniteFun: "A: Fin(X) ==> (\<lambda>x\<in>A. b(x)) \<in> A -||> {b(x). x:A}"
   181 lemma lam_FiniteFun: "A \<in> Fin(X) ==> (\<lambda>x\<in>A. b(x)) \<in> A -||> {b(x). x \<in> A}"
   182 by (blast intro: fun_FiniteFunI lam_funtype)
   182 by (blast intro: fun_FiniteFunI lam_funtype)
   183 
   183 
   184 lemma FiniteFun_Collect_iff:
   184 lemma FiniteFun_Collect_iff:
   185      "f \<in> FiniteFun(A, {y:B. P(y)})
   185      "f \<in> FiniteFun(A, {y \<in> B. P(y)})
   186       \<longleftrightarrow> f \<in> FiniteFun(A,B) & (\<forall>x\<in>domain(f). P(f`x))"
   186       \<longleftrightarrow> f \<in> FiniteFun(A,B) & (\<forall>x\<in>domain(f). P(f`x))"
   187 apply auto
   187 apply auto
   188 apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD])
   188 apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD])
   189 apply (blast dest: Pair_mem_PiD FiniteFun_is_fun)
   189 apply (blast dest: Pair_mem_PiD FiniteFun_is_fun)
   190 apply (rule_tac A1="domain(f)" in
   190 apply (rule_tac A1="domain(f)" in