src/HOL/Data_Structures/Array_Braun.thy
changeset 69232 2b913054a9cf
parent 69206 9660bbf5ce7e
child 69597 ff784d5a5bfb
equal deleted inserted replaced
69231:6b90ace5e5eb 69232:2b913054a9cf
       
     1 (* Author: Tobias Nipkow, with contributions by Thomas Sewell *)
       
     2 
     1 section "Arrays via Braun Trees"
     3 section "Arrays via Braun Trees"
     2 
     4 
     3 theory Array_Braun
     5 theory Array_Braun
     4 imports
     6 imports
     5   Array_Specs
     7   Array_Specs
    47 by auto arith
    49 by auto arith
    48 
    50 
    49 declare upt_Suc[simp del]
    51 declare upt_Suc[simp del]
    50 
    52 
    51 
    53 
    52 text \<open>@{const lookup1}\<close>
    54 paragraph \<open>@{const lookup1}\<close>
    53 
    55 
    54 lemma nth_list_lookup1: "\<lbrakk>braun t; i < size t\<rbrakk> \<Longrightarrow> list t ! i = lookup1 t (i+1)"
    56 lemma nth_list_lookup1: "\<lbrakk>braun t; i < size t\<rbrakk> \<Longrightarrow> list t ! i = lookup1 t (i+1)"
    55 proof(induction t arbitrary: i)
    57 proof(induction t arbitrary: i)
    56   case Leaf thus ?case by simp
    58   case Leaf thus ?case by simp
    57 next
    59 next
    62 
    64 
    63 lemma list_eq_map_lookup1: "braun t \<Longrightarrow> list t = map (lookup1 t) [1..<size t + 1]"
    65 lemma list_eq_map_lookup1: "braun t \<Longrightarrow> list t = map (lookup1 t) [1..<size t + 1]"
    64 by(auto simp add: list_eq_iff_nth_eq size_list nth_list_lookup1)
    66 by(auto simp add: list_eq_iff_nth_eq size_list nth_list_lookup1)
    65 
    67 
    66 
    68 
    67 text \<open>@{const update1}\<close>
    69 paragraph \<open>@{const update1}\<close>
    68 
    70 
    69 lemma size_update1: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> size(update1 n x t) = size t"
    71 lemma size_update1: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> size(update1 n x t) = size t"
    70 proof(induction t arbitrary: n)
    72 proof(induction t arbitrary: n)
    71   case Leaf thus ?case by simp
    73   case Leaf thus ?case by simp
    72 next
    74 next
   114   case (Node l a r) thus ?case using div2_in_bounds[OF Node.prems]
   116   case (Node l a r) thus ?case using div2_in_bounds[OF Node.prems]
   115     by(auto simp: list_update_splice diff1_eq_iff size_list split: nat.split)
   117     by(auto simp: list_update_splice diff1_eq_iff size_list split: nat.split)
   116 qed
   118 qed
   117 
   119 
   118 
   120 
   119 text \<open>@{const adds}\<close>
   121 paragraph \<open>@{const adds}\<close>
   120 
   122 
   121 lemma splice_last: shows
   123 lemma splice_last: shows
   122   "size ys \<le> size xs \<Longrightarrow> splice (xs @ [x]) ys = splice xs ys @ [x]"
   124   "size ys \<le> size xs \<Longrightarrow> splice (xs @ [x]) ys = splice xs ys @ [x]"
   123 and "size ys+1 \<ge> size xs \<Longrightarrow> splice xs (ys @ [y]) = splice xs ys @ [y]"
   125 and "size ys+1 \<ge> size xs \<Longrightarrow> splice xs (ys @ [y]) = splice xs ys @ [y]"
   124 by(induction xs ys arbitrary: x y rule: splice.induct) (auto)
   126 by(induction xs ys arbitrary: x y rule: splice.induct) (auto)
   188 
   190 
   189 
   191 
   190 subsubsection "Functional Correctness"
   192 subsubsection "Functional Correctness"
   191 
   193 
   192 
   194 
   193 text \<open>@{const add_lo}\<close>
   195 paragraph \<open>@{const add_lo}\<close>
   194 
   196 
   195 lemma list_add_lo: "braun t \<Longrightarrow> list (add_lo a t) = a # list t"
   197 lemma list_add_lo: "braun t \<Longrightarrow> list (add_lo a t) = a # list t"
   196 by(induction t arbitrary: a) auto
   198 by(induction t arbitrary: a) auto
   197 
   199 
   198 lemma braun_add_lo: "braun t \<Longrightarrow> braun(add_lo x t)"
   200 lemma braun_add_lo: "braun t \<Longrightarrow> braun(add_lo x t)"
   199 by(induction t arbitrary: x) (auto simp add: list_add_lo simp flip: size_list)
   201 by(induction t arbitrary: x) (auto simp add: list_add_lo simp flip: size_list)
   200 
   202 
   201 
   203 
   202 text \<open>@{const del_lo}\<close>
   204 paragraph \<open>@{const del_lo}\<close>
   203 
   205 
   204 lemma list_merge: "braun (Node l x r) \<Longrightarrow> list(merge l r) = splice (list l) (list r)"
   206 lemma list_merge: "braun (Node l x r) \<Longrightarrow> list(merge l r) = splice (list l) (list r)"
   205 by (induction l r rule: merge.induct) auto
   207 by (induction l r rule: merge.induct) auto
   206 
   208 
   207 lemma braun_merge: "braun (Node l x r) \<Longrightarrow> braun(merge l r)"
   209 lemma braun_merge: "braun (Node l x r) \<Longrightarrow> braun(merge l r)"
   212 
   214 
   213 lemma braun_del_lo: "braun t \<Longrightarrow> braun(del_lo t)"
   215 lemma braun_del_lo: "braun t \<Longrightarrow> braun(del_lo t)"
   214 by (cases t) (simp_all add: braun_merge)
   216 by (cases t) (simp_all add: braun_merge)
   215 
   217 
   216 
   218 
   217 text \<open>@{const del_hi}\<close>
   219 paragraph \<open>@{const del_hi}\<close>
   218 
   220 
   219 lemma list_Nil_iff: "list t = [] \<longleftrightarrow> t = Leaf"
   221 lemma list_Nil_iff: "list t = [] \<longleftrightarrow> t = Leaf"
   220 by(cases t) simp_all
   222 by(cases t) simp_all
   221 
   223 
   222 lemma butlast_splice: "butlast (splice xs ys) =
   224 lemma butlast_splice: "butlast (splice xs ys) =
   264 qed
   266 qed
   265 
   267 
   266 
   268 
   267 subsection "Faster"
   269 subsection "Faster"
   268 
   270 
       
   271 
       
   272 subsubsection \<open>Initialization with 1 element\<close>
       
   273 
   269 fun braun_of_naive :: "'a \<Rightarrow> nat \<Rightarrow> 'a tree" where
   274 fun braun_of_naive :: "'a \<Rightarrow> nat \<Rightarrow> 'a tree" where
   270 "braun_of_naive x n = (if n=0 then Leaf
   275 "braun_of_naive x n = (if n=0 then Leaf
   271   else let m = (n-1) div 2
   276   else let m = (n-1) div 2
   272        in if odd n then Node (braun_of_naive x m) x (braun_of_naive x m)
   277        in if odd n then Node (braun_of_naive x m) x (braun_of_naive x m)
   273        else Node (braun_of_naive x (m + 1)) x (braun_of_naive x m))"
   278        else Node (braun_of_naive x (m + 1)) x (braun_of_naive x m))"
   304 unfolding braun_of_def by (metis eq_fst_iff braun2_of_size_braun)
   309 unfolding braun_of_def by (metis eq_fst_iff braun2_of_size_braun)
   305 
   310 
   306 corollary list_braun_of: "list(braun_of x n) = replicate n x"
   311 corollary list_braun_of: "list(braun_of x n) = replicate n x"
   307 unfolding braun_of_def by (metis eq_fst_iff braun2_of_replicate)
   312 unfolding braun_of_def by (metis eq_fst_iff braun2_of_replicate)
   308 
   313 
       
   314 
       
   315 subsubsection "Proof Infrastructure"
       
   316 
       
   317 text \<open>Originally due to Thomas Sewell.\<close>
       
   318 
       
   319 paragraph \<open>\<open>take_nths\<close>\<close>
       
   320 
       
   321 fun take_nths :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
       
   322 "take_nths i k [] = []" |
       
   323 "take_nths i k (x # xs) = (if i = 0 then x # take_nths (2^k - 1) k xs
       
   324   else take_nths (i - 1) k xs)"
       
   325 
       
   326 lemma take_nths_drop:
       
   327   "take_nths i k (drop j xs) = take_nths (i + j) k xs"
       
   328 by (induct xs arbitrary: i j; simp add: drop_Cons split: nat.split)
       
   329 
       
   330 lemma take_nths_00:
       
   331   "take_nths 0 0 xs = xs"
       
   332 by (induct xs; simp)
       
   333 
       
   334 lemma splice_take_nths:
       
   335   "splice (take_nths 0 (Suc 0) xs) (take_nths (Suc 0) (Suc 0) xs) = xs"
       
   336 by (induct xs; simp)
       
   337 
       
   338 lemma take_nths_take_nths:
       
   339   "take_nths i m (take_nths j n xs) = take_nths ((i * 2^n) + j) (m + n) xs"
       
   340 by (induct xs arbitrary: i j; simp add: algebra_simps power_add)
       
   341 
       
   342 lemma take_nths_empty:
       
   343   "(take_nths i k xs = []) = (length xs \<le> i)"
       
   344 by (induction xs arbitrary: i k) auto
       
   345 
       
   346 lemma hd_take_nths:
       
   347   "i < length xs \<Longrightarrow> hd(take_nths i k xs) = xs ! i"
       
   348 by (induction xs arbitrary: i k) auto
       
   349 
       
   350 lemma take_nths_01_splice:
       
   351   "\<lbrakk> length xs = length ys \<or> length xs = length ys + 1 \<rbrakk> \<Longrightarrow>
       
   352    take_nths 0 (Suc 0) (splice xs ys) = xs \<and>
       
   353    take_nths (Suc 0) (Suc 0) (splice xs ys) = ys"
       
   354 by (induct xs arbitrary: ys; case_tac ys; simp)
       
   355 
       
   356 lemma length_take_nths_00:
       
   357   "length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) \<or>
       
   358    length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) + 1"
       
   359 by (induct xs) auto
       
   360 
       
   361 
       
   362 paragraph \<open>\<open>braun_list\<close>\<close>
       
   363 
       
   364 fun braun_list :: "'a tree \<Rightarrow> 'a list \<Rightarrow> bool" where
       
   365 "braun_list Leaf xs = (xs = [])" |
       
   366 "braun_list (Node l x r) xs = (xs \<noteq> [] \<and> x = hd xs \<and>
       
   367     braun_list l (take_nths 1 1 xs) \<and>
       
   368     braun_list r (take_nths 2 1 xs))"
       
   369 
       
   370 lemma braun_list_eq:
       
   371   "braun_list t xs = (braun t \<and> xs = list t)"
       
   372 proof (induct t arbitrary: xs)
       
   373   case Leaf
       
   374   show ?case by simp
       
   375 next
       
   376   case Node
       
   377   show ?case
       
   378     using length_take_nths_00[of xs] splice_take_nths[of xs]
       
   379     by (auto simp: neq_Nil_conv Node.hyps size_list[symmetric] take_nths_01_splice)
       
   380 qed
       
   381 
       
   382 
       
   383 subsubsection \<open>Converting a list of elements into a Braun tree\<close>
       
   384 
       
   385 fun nodes :: "'a tree list \<Rightarrow> 'a list \<Rightarrow> 'a tree list \<Rightarrow> 'a tree list" where
       
   386 "nodes (l#ls) (x#xs) (r#rs) = Node l x r # nodes ls xs rs" |
       
   387 "nodes (l#ls) (x#xs) [] = Node l x Leaf # nodes ls xs []" |
       
   388 "nodes [] (x#xs) (r#rs) = Node Leaf x r # nodes [] xs rs" |
       
   389 "nodes [] (x#xs) [] = Node Leaf x Leaf # nodes [] xs []" |
       
   390 "nodes ls [] rs = []"
       
   391 
       
   392 fun brauns :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a tree list" where
       
   393 "brauns k xs = (if xs = [] then [] else
       
   394    let ys = take (2^k) xs;
       
   395        zs = drop (2^k) xs;
       
   396        ts = brauns (k+1) zs
       
   397    in nodes ts ys (drop (2^k) ts))"
       
   398 
       
   399 declare brauns.simps[simp del]
       
   400 
       
   401 definition brauns1 :: "'a list \<Rightarrow> 'a tree" where
       
   402 "brauns1 xs = (if xs = [] then Leaf else brauns 0 xs ! 0)"
       
   403 
       
   404 fun t_brauns :: "nat \<Rightarrow> 'a list \<Rightarrow> nat" where
       
   405 "t_brauns k xs = (if xs = [] then 0 else
       
   406    let ys = take (2^k) xs;
       
   407        zs = drop (2^k) xs;
       
   408        ts = brauns (k+1) zs
       
   409    in 4 * min (2^k) (length xs) + t_brauns (k+1) zs)"
       
   410 
       
   411 
       
   412 paragraph "Functional correctness"
       
   413 
       
   414 text \<open>The proof is originally due to Thomas Sewell.\<close>
       
   415 
       
   416 lemma length_nodes:
       
   417   "length (nodes ls xs rs) = length xs"
       
   418 by (induct ls xs rs rule: nodes.induct; simp)
       
   419 
       
   420 lemma nth_nodes:
       
   421   "i < length xs \<Longrightarrow> nodes ls xs rs ! i =
       
   422   Node (if i < length ls then ls ! i else Leaf) (xs ! i)
       
   423     (if i < length rs then rs ! i else Leaf)"
       
   424 by (induct ls xs rs arbitrary: i rule: nodes.induct;
       
   425     simp add: nth_Cons split: nat.split)
       
   426 
       
   427 theorem length_brauns:
       
   428   "length (brauns k xs) = min (length xs) (2 ^ k)"
       
   429 proof (induct xs arbitrary: k rule: measure_induct_rule[where f=length])
       
   430   case (less xs) thus ?case by (simp add: brauns.simps[of k xs] Let_def length_nodes)
       
   431 qed
       
   432 
       
   433 theorem brauns_correct:
       
   434   "i < min (length xs) (2 ^ k) \<Longrightarrow> braun_list (brauns k xs ! i) (take_nths i k xs)"
       
   435 proof (induct xs arbitrary: i k rule: measure_induct_rule[where f=length])
       
   436   case (less xs)
       
   437   have "xs \<noteq> []" using less.prems by auto
       
   438   let ?zs = "drop (2^k) xs"
       
   439   let ?ts = "brauns (Suc k) ?zs"
       
   440   from less.hyps[of ?zs _ "Suc k"]
       
   441   have IH: "\<lbrakk> j = i + 2 ^ k;  i < min (length ?zs) (2 ^ (k+1)) \<rbrakk> \<Longrightarrow>
       
   442     braun_list (?ts ! i) (take_nths j (Suc k) xs)" for i j
       
   443     using \<open>xs \<noteq> []\<close> by (simp add: take_nths_drop)
       
   444   let ?xs' = "take_nths i k xs"
       
   445   let ?ts' = "drop (2^k) ?ts"
       
   446   show ?case
       
   447   proof (cases "i < length ?ts \<and> \<not> i < length ?ts'")
       
   448     case True
       
   449     have "braun_list (brauns k xs ! i) ?xs' \<longleftrightarrow>
       
   450           braun_list (nodes ?ts (take (2^k) xs) ?ts' ! i) ?xs'"
       
   451       using \<open>xs \<noteq> []\<close> by (simp add: brauns.simps[of k xs] Let_def)
       
   452     also have "\<dots> \<longleftrightarrow> braun_list (?ts ! i) (take_nths (2^k + i) (k+1) xs)
       
   453                     \<and> braun_list Leaf (take_nths (2^(k+1) + i) (k+1) xs)"
       
   454       using less.prems True
       
   455       by (clarsimp simp: nth_nodes take_nths_take_nths take_nths_empty hd_take_nths)
       
   456     also have "\<dots>" using less.prems True by (auto simp: IH take_nths_empty length_brauns)
       
   457     finally show ?thesis .
       
   458   next
       
   459     case False
       
   460     thus ?thesis using less.prems
       
   461     by (auto simp: brauns.simps[of k xs] Let_def nth_nodes take_nths_take_nths
       
   462                    IH take_nths_empty hd_take_nths length_brauns)
       
   463   qed
       
   464 qed
       
   465 
       
   466 corollary brauns1_correct:
       
   467   "braun (brauns1 xs) \<and> list (brauns1 xs) = xs"
       
   468 using brauns_correct[of 0 xs 0]
       
   469 by (simp add: brauns1_def braun_list_eq take_nths_00)
       
   470 
       
   471 
       
   472 paragraph "Running Time Analysis"
       
   473 
       
   474 theorem t_brauns:
       
   475   "t_brauns k xs = 4 * length xs"
       
   476 proof (induction xs arbitrary: k rule: measure_induct_rule[where f = length])
       
   477   case (less xs)
       
   478   show ?case
       
   479   proof cases
       
   480     assume "xs = []"
       
   481     thus ?thesis by(simp add: Let_def)
       
   482   next
       
   483     assume "xs \<noteq> []"
       
   484     let ?zs = "drop (2^k) xs"
       
   485     have "t_brauns k xs = t_brauns (k+1) ?zs + 4 * min (2^k) (length xs)"
       
   486      using \<open>xs \<noteq> []\<close> by(simp add: Let_def)
       
   487     also have "\<dots> = 4 * length ?zs + 4 * min (2^k) (length xs)"
       
   488       using less[of ?zs "k+1"] \<open>xs \<noteq> []\<close>
       
   489       by (simp)
       
   490     also have "\<dots> = 4 * length xs"
       
   491       by(simp)
       
   492     finally show ?case .
       
   493   qed
       
   494 qed
       
   495 
       
   496 
       
   497 subsubsection \<open>Converting a Braun Tree into a List of Elements\<close>
       
   498 
       
   499 text \<open>The code and the proof are originally due to Thomas Sewell (except running time).\<close>
       
   500 
       
   501 function list_fast_rec :: "'a tree list \<Rightarrow> 'a list" where
       
   502 "list_fast_rec ts = (if ts = [] then [] else
       
   503   let us = filter (\<lambda>t. t \<noteq> Leaf) ts
       
   504   in map root_val us @ list_fast_rec (map left us @ map right us))"
       
   505 by (pat_completeness, auto)
       
   506 
       
   507 lemma list_fast_rec_term: "\<lbrakk> ts \<noteq> []; us = filter (\<lambda>t. t \<noteq> \<langle>\<rangle>) ts \<rbrakk> \<Longrightarrow>
       
   508   (map left us @ map right us, ts) \<in> measure (sum_list \<circ> map (\<lambda>t. 2 * size t + 1))"
       
   509 apply (clarsimp simp: sum_list_addf[symmetric] sum_list_map_filter')
       
   510 apply (rule sum_list_strict_mono; simp)
       
   511 apply (case_tac x; simp)
       
   512 done
       
   513 
       
   514 termination
       
   515 apply (relation "measure (sum_list o map (\<lambda>t. 2 * size t + 1))")
       
   516  apply simp
       
   517 using list_fast_rec_term by auto
       
   518 
       
   519 declare list_fast_rec.simps[simp del]
       
   520 
       
   521 definition list_fast :: "'a tree \<Rightarrow> 'a list" where
       
   522 "list_fast t = list_fast_rec [t]"
       
   523 
       
   524 function t_list_fast_rec :: "'a tree list \<Rightarrow> nat" where
       
   525 "t_list_fast_rec ts = (if ts = [] then 0 else
       
   526   let us = filter (\<lambda>t. t \<noteq> Leaf) ts
       
   527   in length ts + 5 * length us + t_list_fast_rec (map left us @ map right us))"
       
   528 by (pat_completeness, auto)
       
   529 
       
   530 termination
       
   531 apply (relation "measure (sum_list o map (\<lambda>t. 2 * size t + 1))")
       
   532  apply simp
       
   533 using list_fast_rec_term by auto
       
   534 
       
   535 declare t_list_fast_rec.simps[simp del]
       
   536 
       
   537 
       
   538 paragraph "Functional Correctness"
       
   539 
       
   540 lemma list_fast_rec_all_Leaf:
       
   541   "\<forall>t \<in> set ts. t = Leaf \<Longrightarrow> list_fast_rec ts = []"
       
   542 by (simp add: filter_empty_conv list_fast_rec.simps)
       
   543 
       
   544 lemma take_nths_eq_single:
       
   545   "length xs - i < 2^n \<Longrightarrow> take_nths i n xs = take 1 (drop i xs)"
       
   546 by (induction xs arbitrary: i n; simp add: drop_Cons')
       
   547 
       
   548 lemma braun_list_Nil:
       
   549   "braun_list t [] = (t = Leaf)"
       
   550 by (cases t; simp)
       
   551 
       
   552 lemma braun_list_not_Nil: "xs \<noteq> [] \<Longrightarrow>
       
   553   braun_list t xs =
       
   554  (\<exists>l x r. t = Node l x r \<and> x = hd xs \<and>
       
   555     braun_list l (take_nths 1 1 xs) \<and>
       
   556     braun_list r (take_nths 2 1 xs))"
       
   557 by(cases t; simp)
       
   558 
       
   559 theorem list_fast_rec_correct:
       
   560   "\<lbrakk> length ts = 2 ^ k; \<forall>i < 2 ^ k. braun_list (ts ! i) (take_nths i k xs) \<rbrakk>
       
   561     \<Longrightarrow> list_fast_rec ts = xs"
       
   562 proof (induct xs arbitrary: k ts rule: measure_induct_rule[where f=length])
       
   563   case (less xs)
       
   564   show ?case
       
   565   proof (cases "length xs < 2 ^ k")
       
   566     case True
       
   567     from less.prems True have filter:
       
   568       "\<exists>n. ts = map (\<lambda>x. Node Leaf x Leaf) xs @ replicate n Leaf"
       
   569       apply (rule_tac x="length ts - length xs" in exI)
       
   570       apply (clarsimp simp: list_eq_iff_nth_eq)
       
   571       apply(auto simp: nth_append braun_list_not_Nil take_nths_eq_single braun_list_Nil hd_drop_conv_nth)
       
   572       done
       
   573     thus ?thesis
       
   574       by (clarsimp simp: list_fast_rec.simps[of ts] o_def list_fast_rec_all_Leaf)
       
   575   next
       
   576     case False
       
   577     with less.prems(2) have *:
       
   578       "\<forall>i < 2 ^ k. ts ! i \<noteq> Leaf
       
   579          \<and> root_val (ts ! i) = xs ! i
       
   580          \<and> braun_list (left (ts ! i)) (take_nths (i + 2 ^ k) (Suc k) xs)
       
   581          \<and> (\<forall>ys. ys = take_nths (i + 2 * 2 ^ k) (Suc k) xs
       
   582                  \<longrightarrow> braun_list (right (ts ! i)) ys)"
       
   583       by (auto simp: take_nths_empty hd_take_nths braun_list_not_Nil take_nths_take_nths
       
   584                      algebra_simps)
       
   585     have 1: "map root_val ts = take (2 ^ k) xs"
       
   586       using less.prems(1) False by (simp add: list_eq_iff_nth_eq *)
       
   587     have 2: "list_fast_rec (map left ts @ map right ts) = drop (2 ^ k) xs"
       
   588       using less.prems(1) False
       
   589       by (auto intro!: Nat.diff_less less.hyps[where k= "Suc k"]
       
   590                simp: nth_append * take_nths_drop algebra_simps)
       
   591     from less.prems(1) False show ?thesis
       
   592       by (auto simp: list_fast_rec.simps[of ts] 1 2 Let_def * all_set_conv_all_nth)
       
   593   qed
       
   594 qed
       
   595 
       
   596 corollary list_fast_correct:
       
   597   "braun t \<Longrightarrow> list_fast t = list t"
       
   598 by (simp add: list_fast_def take_nths_00 braun_list_eq list_fast_rec_correct[where k=0])
       
   599 
       
   600 
       
   601 paragraph "Running Time Analysis"
       
   602 
       
   603 lemma sum_tree_list_children: "\<forall>t \<in> set ts. t \<noteq> Leaf \<Longrightarrow>
       
   604   (\<Sum>t\<leftarrow>ts. k * size t) = (\<Sum>t \<leftarrow> map left ts @ map right ts. k * size t) + k * length ts"
       
   605 by(induction ts)(auto simp add: neq_Leaf_iff algebra_simps)
       
   606 
       
   607 theorem t_list_fast_rec_ub:
       
   608   "t_list_fast_rec ts \<le> sum_list (map (\<lambda>t. 7*size t + 1) ts)"
       
   609 proof (induction ts rule: measure_induct_rule[where f="sum_list o map (\<lambda>t. 2*size t + 1)"])
       
   610   case (less ts)
       
   611   show ?case
       
   612   proof cases
       
   613     assume "ts = []"
       
   614     thus ?thesis using t_list_fast_rec.simps[of ts] by(simp add: Let_def)
       
   615   next
       
   616     assume "ts \<noteq> []"
       
   617     let ?us = "filter (\<lambda>t. t \<noteq> Leaf) ts"
       
   618     let ?children = "map left ?us @ map right ?us"
       
   619     have "t_list_fast_rec ts = t_list_fast_rec ?children + 5 * length ?us + length ts"
       
   620      using \<open>ts \<noteq> []\<close> t_list_fast_rec.simps[of ts] by(simp add: Let_def)
       
   621     also have "\<dots> \<le> (\<Sum>t\<leftarrow>?children. 7 * size t + 1) + 5 * length ?us + length ts"
       
   622       using less[of "map left ?us @ map right ?us"]
       
   623         list_fast_rec_term[of ts, OF \<open>ts \<noteq> []\<close>]
       
   624       by (simp)
       
   625     also have "\<dots> = (\<Sum>t\<leftarrow>?children. 7*size t) + 7 * length ?us + length ts"
       
   626       by(simp add: sum_list_Suc o_def)
       
   627     also have "\<dots> = (\<Sum>t\<leftarrow>?us. 7*size t) + length ts"
       
   628       by(simp add: sum_tree_list_children)
       
   629     also have "\<dots> \<le> (\<Sum>t\<leftarrow>ts. 7*size t) + length ts"
       
   630       by(simp add: sum_list_filter_le_nat)
       
   631     also have "\<dots> = (\<Sum>t\<leftarrow>ts. 7 * size t + 1)"
       
   632       by(simp add: sum_list_Suc)
       
   633     finally show ?case .
       
   634   qed
       
   635 qed
       
   636 
   309 end
   637 end