src/HOL/Data_Structures/Braun_Tree.thy
changeset 69192 2c4bf4d84de5
parent 69143 5acb1eece41b
child 69195 b6434dce1126
equal deleted inserted replaced
69190:278b09a92ed6 69192:2c4bf4d84de5
     5 theory Braun_Tree
     5 theory Braun_Tree
     6 imports "HOL-Library.Tree_Real"
     6 imports "HOL-Library.Tree_Real"
     7 begin
     7 begin
     8 
     8 
     9 text \<open>Braun Trees were studied by Braun and Rem~\cite{BraunRem}
     9 text \<open>Braun Trees were studied by Braun and Rem~\cite{BraunRem}
    10 and later Hoogerwoord~\cite{Hoogerwoord} who gave them their name.\<close>
    10 and later Hoogerwoord~\cite{Hoogerwoord}.\<close>
    11 
    11 
    12 fun braun :: "'a tree \<Rightarrow> bool" where
    12 fun braun :: "'a tree \<Rightarrow> bool" where
    13 "braun Leaf = True" |
    13 "braun Leaf = True" |
    14 "braun (Node l x r) = ((size l = size r \<or> size l = size r + 1) \<and> braun l \<and> braun r)"
    14 "braun (Node l x r) = ((size l = size r \<or> size l = size r + 1) \<and> braun l \<and> braun r)"
    15 
    15 
    49     assume "?B"
    49     assume "?B"
    50     thus ?thesis using Node by(intro balanced_Node_if_wbal1) auto
    50     thus ?thesis using Node by(intro balanced_Node_if_wbal1) auto
    51   qed
    51   qed
    52 qed
    52 qed
    53 
    53 
       
    54 subsection \<open>Numbering Nodes\<close>
       
    55 
       
    56 text \<open>We show that a tree is a Braun tree iff a parity-based
       
    57 numbering (\<open>braun_indices\<close>) of nodes yields an interval of numbers.\<close>
       
    58 
       
    59 abbreviation double :: "nat \<Rightarrow> nat" where
       
    60 "double \<equiv> (*) 2"
       
    61 
       
    62 abbreviation double1 :: "nat \<Rightarrow> nat" where
       
    63 "double1 \<equiv> \<lambda>n. Suc(2*n)"
       
    64 
       
    65 fun braun_indices :: "'a tree \<Rightarrow> nat set" where
       
    66 "braun_indices Leaf = {}" |
       
    67 "braun_indices (Node l _ r) = {1} \<union> double ` braun_indices l \<union> double1 ` braun_indices r"
       
    68 
       
    69 lemma braun_indices_if_braun: "braun t \<Longrightarrow> braun_indices t = {1..size t}"
       
    70 proof(induction t)
       
    71   case Leaf thus ?case by simp
       
    72 next
       
    73   have *: "double ` {a..b} \<union> double1 ` {a..b} = {2*a..2*b+1}" (is "?l = ?r") for a b
       
    74   proof
       
    75     show "?l \<subseteq> ?r" by auto
       
    76   next
       
    77     have "\<exists>x2\<in>{a..b}. x \<in> {Suc (2*x2), 2*x2}" if *: "x \<in> {2*a .. 2*b+1}" for x
       
    78     proof -
       
    79       have "x div 2 \<in> {a..b}" using * by auto
       
    80       moreover have "x \<in> {2 * (x div 2), Suc(2 * (x div 2))}" by auto
       
    81       ultimately show ?thesis by blast
       
    82     qed
       
    83     thus "?r \<subseteq> ?l" by fastforce
       
    84   qed
       
    85   case (Node l x r)
       
    86   hence "size l = size r \<or> size l = size r + 1" (is "?A \<or> ?B") by auto
       
    87   thus ?case
       
    88   proof
       
    89     assume ?A
       
    90     with Node show ?thesis by (auto simp: *)
       
    91   next
       
    92     assume ?B
       
    93     with Node show ?thesis by (auto simp: * atLeastAtMostSuc_conv)
       
    94   qed
       
    95 qed
       
    96 
       
    97 text \<open>How many even/odd natural numbers are there between m and n?\<close>
       
    98 
       
    99 lemma card_atLeastAtMost_even:
       
   100   "card {i \<in> {m..n::nat}. even i} = (n+1-m + (m+1) mod 2) div 2" (is "?l m n = ?r m n")
       
   101 proof(induction "n+1 - m" arbitrary: n m)
       
   102    case 0 thus ?case by simp
       
   103 next
       
   104   case Suc
       
   105   have "m \<le> n" using Suc(2) by arith
       
   106   hence "{m..n} = insert m {m+1..n}" by auto
       
   107   hence "?l m n = card {i \<in> insert m {m+1..n}. even i}" by simp
       
   108   also have "\<dots> = ?r m n" (is "?l = ?r")
       
   109   proof (cases)
       
   110     assume "even m"
       
   111     hence "{i \<in> insert m {m+1..n}. even i} = insert m {i \<in> {m+1..n}. even i}" by auto
       
   112     hence "?l = card {i \<in> {m+1..n}. even i} + 1" by simp
       
   113     also have "\<dots> = (n-m + (m+2) mod 2) div 2 + 1" using Suc(1)[of n "m+1"] Suc(2) by simp
       
   114     also have "\<dots> = ?r" using \<open>even m\<close> \<open>m \<le> n\<close> by auto
       
   115     finally show ?thesis .
       
   116   next
       
   117     assume "odd m"
       
   118     hence "{i \<in> insert m {m+1..n}. even i} = {i \<in> {m+1..n}. even i}" by auto
       
   119     hence "?l = card ..." by simp
       
   120     also have "\<dots> = (n-m + (m+2) mod 2) div 2" using Suc(1)[of n "m+1"] Suc(2) by simp
       
   121     also have "\<dots> = ?r" using \<open>odd m\<close> \<open>m \<le> n\<close> even_iff_mod_2_eq_zero[of m] by simp
       
   122     finally show ?thesis .
       
   123   qed
       
   124   finally show ?case .
       
   125 qed
       
   126 
       
   127 lemma card_atLeastAtMost_odd: "card {i \<in> {m..n::nat}. odd i} = (n+1-m + m mod 2) div 2"
       
   128 proof -
       
   129   let ?A = "{i \<in> {m..n}. odd i}"
       
   130   let ?B = "{i \<in> {m+1..n+1}. even i}"
       
   131   have "card ?A = card (Suc ` ?A)" by (simp add: card_image)
       
   132   also have "Suc ` ?A = ?B" using Suc_le_D by(force simp: image_iff)
       
   133   also have "card ?B = (n+1-m + (m) mod 2) div 2"
       
   134     using card_atLeastAtMost_even[of "m+1" "n+1"] by simp
       
   135   finally show ?thesis .
       
   136 qed
       
   137 
       
   138 lemma mod2_iff: "x mod 2 = (if even x then 0 else 1)"
       
   139 by (simp add: odd_iff_mod_2_eq_one)
       
   140 
       
   141 lemma compact_ivl_even: assumes "A = {i \<in> {m..n}. even i}"
       
   142 shows "A = (\<lambda>j. 2*(j-1) + m + m mod 2) ` {1..card A}" (is "_ = ?A")
       
   143 proof
       
   144   let ?a = "(n+1-m + (m+1) mod 2) div 2"
       
   145   have "\<exists>j \<in> {1..?a}. i = 2*(j-1) + m + m mod 2" if *: "i \<in> {m..n}" "even i" for i
       
   146   proof -
       
   147     let ?j = "(i - (m + m mod 2)) div 2 + 1"
       
   148     have "?j \<in> {1..?a} \<and> i = 2*(?j-1) + m + m mod 2" using * by(auto simp: mod2_iff) presburger+
       
   149     thus ?thesis by blast
       
   150   qed
       
   151   thus "A \<subseteq> ?A" using assms
       
   152     by(auto simp: image_iff card_atLeastAtMost_even simp del: atLeastAtMost_iff)
       
   153 next
       
   154   let ?a = "(n+1-m + (m+1) mod 2) div 2"
       
   155   have 1: "2 * (j - 1) + m + m mod 2 \<in> {m..n}" if *: "j \<in> {1..?a}" for j
       
   156     using * by(auto simp: mod2_iff)
       
   157   have 2: "even (2 * (j - 1) + m + m mod 2)" for j by presburger
       
   158   show "?A \<subseteq> A"
       
   159     apply(simp add: assms card_atLeastAtMost_even del: atLeastAtMost_iff One_nat_def)
       
   160     using 1 2 by blast
       
   161 qed
       
   162 
       
   163 lemma compact_ivl_odd:
       
   164   assumes "B = {i \<in> {m..n}. odd i}" shows "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..card B}"
       
   165 proof -
       
   166   define A :: " nat set" where "A = Suc ` B"
       
   167   have "A = {i \<in> {m+1..n+1}. even i}"
       
   168     using Suc_le_D by(force simp add: A_def assms image_iff)
       
   169   from compact_ivl_even[OF this]
       
   170   have "A = Suc ` (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}"
       
   171     by (simp add: image_comp o_def)
       
   172   hence B: "B = (\<lambda>i. 2 * (i - 1) + m + (m + 1) mod 2) ` {1..card A}"
       
   173     using A_def by (simp add: inj_image_eq_iff)
       
   174   have "card A = card B" by (metis A_def bij_betw_Suc bij_betw_same_card) 
       
   175   with B show ?thesis by simp
       
   176 qed
       
   177 
       
   178 lemma even_odd_decomp: assumes "\<forall>x \<in> A. even x" "\<forall>x \<in> B. odd x"  "A \<union> B = {m..n}"
       
   179 shows "(let a = card A; b = card B in
       
   180    a + b = n+1-m \<and>
       
   181    A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..a} \<and>
       
   182    B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..b} \<and>
       
   183    (a = b \<or> a = b+1 \<and> even m \<or> a+1 = b \<and> odd m))"
       
   184 proof -
       
   185   let ?a = "card A" let ?b = "card B"
       
   186   have "finite A \<and> finite B"
       
   187     by (metis \<open>A \<union> B = {m..n}\<close> finite_Un finite_atLeastAtMost)
       
   188   hence ab: "?a + ?b = Suc n - m"
       
   189     by (metis Int_emptyI assms card_Un_disjoint card_atLeastAtMost)
       
   190   have A: "A = {i \<in> {m..n}. even i}" using assms by auto
       
   191   hence A': "A = (\<lambda>i. 2*(i-1) + m + m mod 2) ` {1..?a}" by(rule compact_ivl_even)
       
   192   have B: "B = {i \<in> {m..n}. odd i}" using assms by auto
       
   193   hence B': "B = (\<lambda>i. 2*(i-1) + m + (m+1) mod 2) ` {1..?b}" by(rule compact_ivl_odd)
       
   194   have "?a = ?b \<or> ?a = ?b+1 \<and> even m \<or> ?a+1 = ?b \<and> odd m"
       
   195     apply(simp add: Let_def mod2_iff
       
   196       card_atLeastAtMost_even[of m n, simplified A[symmetric]]
       
   197       card_atLeastAtMost_odd[of m n, simplified B[symmetric]] split!: if_splits)
       
   198     by linarith
       
   199   with ab A' B' show ?thesis by simp
       
   200 qed
       
   201 
       
   202 lemma braun_indices1: "i \<in> braun_indices t \<Longrightarrow> i \<ge> 1"
       
   203 by (induction t arbitrary: i) auto
       
   204 
       
   205 lemma finite_braun_indices: "finite(braun_indices t)"
       
   206 by (induction t) auto
       
   207 
       
   208 lemma evens_odds_disj: "double  ` braun_indices A \<inter> double1 ` B = {}"
       
   209 using double_not_eq_Suc_double by auto
       
   210 
       
   211 lemma card_braun_indices: "card (braun_indices t) = size t"
       
   212 proof (induction t)
       
   213   case Leaf thus ?case by simp
       
   214 next
       
   215   case Node
       
   216   thus ?case
       
   217     by(auto simp: UNION_singleton_eq_range finite_braun_indices card_Un_disjoint
       
   218                   card_insert_if evens_odds_disj card_image inj_on_def dest: braun_indices1)
       
   219 qed
       
   220 
       
   221 lemma eq: "insert (Suc 0) M = {Suc 0..n} \<Longrightarrow> Suc 0 \<notin> M \<Longrightarrow> M = {2..n}"
       
   222 by (metis Suc_n_not_le_n atLeastAtMost_iff atLeastAtMost_insertL insertI1 insert_ident numeral_2_eq_2)
       
   223 
       
   224 lemma inj_on_Suc: "inj_on f N \<Longrightarrow> inj_on (\<lambda>n. Suc(f n)) N"
       
   225 by (simp add: inj_on_def)
       
   226 
       
   227 lemma braun_if_braun_indices: "braun_indices t = {1..size t} \<Longrightarrow> braun t"
       
   228 proof(induction t)
       
   229 case Leaf
       
   230   then show ?case by simp
       
   231 next
       
   232   case (Node t1 x2 t2)
       
   233   have 1: "i > 0 \<Longrightarrow> Suc(Suc(2 * (i - Suc 0))) = 2*i" for i::nat by(simp add: algebra_simps)
       
   234   have 2: "i > 0 \<Longrightarrow> 2 * (i - Suc 0) + 3 = 2*i + 1" for i::nat by(simp add: algebra_simps)
       
   235   have 3: "double ` braun_indices t1 \<union> double1 ` braun_indices t2 =
       
   236      {2..size t1 + size t2 + 1}" using Node.prems braun_indices1[of 0 t2]
       
   237     apply simp
       
   238     apply(drule eq)
       
   239      apply auto
       
   240     done
       
   241   thus ?case using Node.IH even_odd_decomp[OF _ _ 3]
       
   242     by(simp add: card_image inj_on_def card_braun_indices Let_def 1 2 inj_image_eq_iff
       
   243            cong: image_cong_strong)
       
   244 qed
       
   245 
       
   246 lemma braun_iff_braun_indices: "braun t \<longleftrightarrow> braun_indices t = {1..size t}"
       
   247 using braun_if_braun_indices braun_indices_if_braun by blast
       
   248 
    54 end
   249 end