src/HOL/Multivariate_Analysis/Complex_Transcendental.thy
changeset 62843 313d3b697c9a
parent 62534 6855b348e828
child 63040 eb4ddd18d635
equal deleted inserted replaced
62842:db9f95ca2a8f 62843:313d3b697c9a
   990   assumes z: "z \<noteq> 0"
   990   assumes z: "z \<noteq> 0"
   991     shows "ln (cmod z) \<le> cmod (Ln z)"
   991     shows "ln (cmod z) \<le> cmod (Ln z)"
   992   using norm_exp [of "Ln z", simplified exp_Ln [OF z]]
   992   using norm_exp [of "Ln z", simplified exp_Ln [OF z]]
   993   by (metis Re_Ln complex_Re_le_cmod z)
   993   by (metis Re_Ln complex_Re_le_cmod z)
   994 
   994 
   995 lemma exists_complex_root:
   995 proposition exists_complex_root:
   996   fixes a :: complex
   996   fixes z :: complex
   997   shows "n \<noteq> 0 \<Longrightarrow> \<exists>z. z ^ n = a"
   997   assumes "n \<noteq> 0"  obtains w where "z = w ^ n"
   998   apply (cases "a=0", simp)
   998   apply (cases "z=0")
   999   apply (rule_tac x= "exp(Ln(a) / n)" in exI)
   999   using assms apply (simp add: power_0_left)
  1000   apply (auto simp: exp_of_nat_mult [symmetric])
  1000   apply (rule_tac w = "exp(Ln z / n)" in that)
  1001   done
  1001   apply (auto simp: assms exp_of_nat_mult [symmetric])
       
  1002   done
       
  1003 
       
  1004 corollary exists_complex_root_nonzero:
       
  1005   fixes z::complex
       
  1006   assumes "z \<noteq> 0" "n \<noteq> 0"
       
  1007   obtains w where "w \<noteq> 0" "z = w ^ n"
       
  1008   by (metis exists_complex_root [of n z] assms power_0_left)
  1002 
  1009 
  1003 subsection\<open>The Unwinding Number and the Ln-product Formula\<close>
  1010 subsection\<open>The Unwinding Number and the Ln-product Formula\<close>
  1004 
  1011 
  1005 text\<open>Note that in this special case the unwinding number is -1, 0 or 1.\<close>
  1012 text\<open>Note that in this special case the unwinding number is -1, 0 or 1.\<close>
  1006 
  1013