src/HOL/Tools/meson.ML
changeset 15579 32bee18c675f
parent 15574 b1d1b5bfc464
child 15581 f07e865d9d40
equal deleted inserted replaced
15578:d364491ba718 15579:32bee18c675f
     9 
     9 
    10 NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
    10 NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
    11 FUNCTION nodups -- if done to goal clauses too!
    11 FUNCTION nodups -- if done to goal clauses too!
    12 *)
    12 *)
    13 
    13 
    14 local
    14 signature BASIC_MESON =
    15 
    15 sig
    16  val not_conjD = thm "meson_not_conjD";
    16   val size_of_subgoals	: thm -> int
    17  val not_disjD = thm "meson_not_disjD";
    17   val make_nnf		: thm -> thm
    18  val not_notD = thm "meson_not_notD";
    18   val skolemize		: thm -> thm
    19  val not_allD = thm "meson_not_allD";
    19   val make_clauses	: thm list -> thm list
    20  val not_exD = thm "meson_not_exD";
    20   val make_horns	: thm list -> thm list
    21  val imp_to_disjD = thm "meson_imp_to_disjD";
    21   val best_prolog_tac	: (thm -> int) -> thm list -> tactic
    22  val not_impD = thm "meson_not_impD";
    22   val depth_prolog_tac	: thm list -> tactic
    23  val iff_to_disjD = thm "meson_iff_to_disjD";
    23   val gocls		: thm list -> thm list
    24  val not_iffD = thm "meson_not_iffD";
    24   val skolemize_prems_tac	: thm list -> int -> tactic
    25  val conj_exD1 = thm "meson_conj_exD1";
    25   val MESON		: (thm list -> tactic) -> int -> tactic
    26  val conj_exD2 = thm "meson_conj_exD2";
    26   val best_meson_tac	: (thm -> int) -> int -> tactic
    27  val disj_exD = thm "meson_disj_exD";
    27   val safe_best_meson_tac	: int -> tactic
    28  val disj_exD1 = thm "meson_disj_exD1";
    28   val depth_meson_tac	: int -> tactic
    29  val disj_exD2 = thm "meson_disj_exD2";
    29   val prolog_step_tac'	: thm list -> int -> tactic
    30  val disj_assoc = thm "meson_disj_assoc";
    30   val iter_deepen_prolog_tac	: thm list -> tactic
    31  val disj_comm = thm "meson_disj_comm";
    31   val iter_deepen_meson_tac	: int -> tactic
    32  val disj_FalseD1 = thm "meson_disj_FalseD1";
    32   val meson_tac		: int -> tactic
    33  val disj_FalseD2 = thm "meson_disj_FalseD2";
    33   val negate_head	: thm -> thm
    34 
    34   val select_literal	: int -> thm -> thm
    35 
    35   val skolemize_tac	: int -> tactic
    36  (**** Operators for forward proof ****)
    36   val make_clauses_tac	: int -> tactic
    37 
    37   val meson_setup	: (theory -> theory) list
    38  (*raises exception if no rules apply -- unlike RL*)
    38 end
    39  fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
    39 
    40    | tryres (th, []) = raise THM("tryres", 0, [th]);
    40 
    41 
    41 structure Meson =
    42  val prop_of = #prop o rep_thm;
    42 struct
    43 
    43 
    44  (*Permits forward proof from rules that discharge assumptions*)
    44 val not_conjD = thm "meson_not_conjD";
    45  fun forward_res nf st =
    45 val not_disjD = thm "meson_not_disjD";
    46    case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
    46 val not_notD = thm "meson_not_notD";
    47    of SOME(th,_) => th
    47 val not_allD = thm "meson_not_allD";
    48     | NONE => raise THM("forward_res", 0, [st]);
    48 val not_exD = thm "meson_not_exD";
    49 
    49 val imp_to_disjD = thm "meson_imp_to_disjD";
    50 
    50 val not_impD = thm "meson_not_impD";
    51  (*Are any of the constants in "bs" present in the term?*)
    51 val iff_to_disjD = thm "meson_iff_to_disjD";
    52  fun has_consts bs =
    52 val not_iffD = thm "meson_not_iffD";
    53    let fun has (Const(a,_)) = a mem bs
    53 val conj_exD1 = thm "meson_conj_exD1";
    54 	 | has (Const ("Hilbert_Choice.Eps",_) $ _) = false
    54 val conj_exD2 = thm "meson_conj_exD2";
    55                       (*ignore constants within @-terms*)
    55 val disj_exD = thm "meson_disj_exD";
    56          | has (f$u) = has f orelse has u
    56 val disj_exD1 = thm "meson_disj_exD1";
    57          | has (Abs(_,_,t)) = has t
    57 val disj_exD2 = thm "meson_disj_exD2";
    58          | has _ = false
    58 val disj_assoc = thm "meson_disj_assoc";
    59    in  has  end;
    59 val disj_comm = thm "meson_disj_comm";
    60 
    60 val disj_FalseD1 = thm "meson_disj_FalseD1";
    61 
    61 val disj_FalseD2 = thm "meson_disj_FalseD2";
    62  (**** Clause handling ****)
    62 
    63 
    63 
    64  fun literals (Const("Trueprop",_) $ P) = literals P
    64 (**** Operators for forward proof ****)
    65    | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
    65 
    66    | literals (Const("Not",_) $ P) = [(false,P)]
    66 (*raises exception if no rules apply -- unlike RL*)
    67    | literals P = [(true,P)];
    67 fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
    68 
    68   | tryres (th, []) = raise THM("tryres", 0, [th]);
    69  (*number of literals in a term*)
    69 
    70  val nliterals = length o literals;
    70 val prop_of = #prop o rep_thm;
    71 
    71 
    72  (*to detect, and remove, tautologous clauses*)
    72 (*Permits forward proof from rules that discharge assumptions*)
    73  fun taut_lits [] = false
    73 fun forward_res nf st =
    74    | taut_lits ((flg,t)::ts) = (not flg,t) mem ts orelse taut_lits ts;
    74   case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
    75 
    75   of SOME(th,_) => th
    76  (*Include False as a literal: an occurrence of ~False is a tautology*)
    76    | NONE => raise THM("forward_res", 0, [st]);
    77  fun is_taut th = taut_lits ((true, HOLogic.false_const) ::
    77 
    78                              literals (prop_of th));
    78 
    79 
    79 (*Are any of the constants in "bs" present in the term?*)
    80  (*Generation of unique names -- maxidx cannot be relied upon to increase!
    80 fun has_consts bs =
    81    Cannot rely on "variant", since variables might coincide when literals
    81   let fun has (Const(a,_)) = a mem bs
    82    are joined to make a clause...
    82 	| has (Const ("Hilbert_Choice.Eps",_) $ _) = false
    83    19 chooses "U" as the first variable name*)
    83 		     (*ignore constants within @-terms*)
    84  val name_ref = ref 19;
    84 	| has (f$u) = has f orelse has u
    85 
    85 	| has (Abs(_,_,t)) = has t
    86  (*Replaces universally quantified variables by FREE variables -- because
    86 	| has _ = false
    87    assumptions may not contain scheme variables.  Later, call "generalize". *)
    87   in  has  end;
    88  fun freeze_spec th =
    88 
    89    let val sth = th RS spec
    89 
    90        val newname = (name_ref := !name_ref + 1;
    90 (**** Clause handling ****)
    91                       radixstring(26, "A", !name_ref))
    91 
    92    in  read_instantiate [("x", newname)] sth  end;
    92 fun literals (Const("Trueprop",_) $ P) = literals P
    93 
    93   | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
    94  fun resop nf [prem] = resolve_tac (nf prem) 1;
    94   | literals (Const("Not",_) $ P) = [(false,P)]
    95 
    95   | literals P = [(true,P)];
    96  (*Conjunctive normal form, detecting tautologies early.
    96 
    97    Strips universal quantifiers and breaks up conjunctions. *)
    97 (*number of literals in a term*)
    98  fun cnf_aux seen (th,ths) =
    98 val nliterals = length o literals;
    99    if taut_lits (literals(prop_of th) @ seen)  
    99 
   100    then ths     (*tautology ignored*)
   100 (*to detect, and remove, tautologous clauses*)
   101    else if not (has_consts ["All","op &"] (prop_of th))  
   101 fun taut_lits [] = false
   102    then th::ths (*no work to do, terminate*)
   102   | taut_lits ((flg,t)::ts) = (not flg,t) mem ts orelse taut_lits ts;
   103    else (*conjunction?*)
   103 
   104          cnf_aux seen (th RS conjunct1,
   104 (*Include False as a literal: an occurrence of ~False is a tautology*)
   105                        cnf_aux seen (th RS conjunct2, ths))
   105 fun is_taut th = taut_lits ((true, HOLogic.false_const) ::
   106    handle THM _ => (*universal quant?*)
   106 			    literals (prop_of th));
   107          cnf_aux  seen (freeze_spec th,  ths)
   107 
   108    handle THM _ => (*disjunction?*)
   108 (*Generation of unique names -- maxidx cannot be relied upon to increase!
   109      let val tac =
   109   Cannot rely on "variant", since variables might coincide when literals
   110          (METAHYPS (resop (cnf_nil seen)) 1) THEN
   110   are joined to make a clause...
   111          (fn st' => st' |>
   111   19 chooses "U" as the first variable name*)
   112                  METAHYPS (resop (cnf_nil (literals (concl_of st') @ seen))) 1)
   112 val name_ref = ref 19;
   113      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
   113 
   114  and cnf_nil seen th = cnf_aux seen (th,[]);
   114 (*Replaces universally quantified variables by FREE variables -- because
   115 
   115   assumptions may not contain scheme variables.  Later, call "generalize". *)
   116  (*Top-level call to cnf -- it's safe to reset name_ref*)
   116 fun freeze_spec th =
   117  fun cnf (th,ths) =
   117   let val sth = th RS spec
   118     (name_ref := 19;  cnf (th RS conjunct1, cnf (th RS conjunct2, ths))
   118       val newname = (name_ref := !name_ref + 1;
   119      handle THM _ => (*not a conjunction*) cnf_aux [] (th, ths));
   119 		     radixstring(26, "A", !name_ref))
   120 
   120   in  read_instantiate [("x", newname)] sth  end;
   121  (**** Removal of duplicate literals ****)
   121 
   122 
   122 fun resop nf [prem] = resolve_tac (nf prem) 1;
   123  (*Forward proof, passing extra assumptions as theorems to the tactic*)
   123 
   124  fun forward_res2 nf hyps st =
   124 (*Conjunctive normal form, detecting tautologies early.
   125    case Seq.pull
   125   Strips universal quantifiers and breaks up conjunctions. *)
   126          (REPEAT
   126 fun cnf_aux seen (th,ths) =
   127           (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
   127   if taut_lits (literals(prop_of th) @ seen)  
   128           st)
   128   then ths     (*tautology ignored*)
   129    of SOME(th,_) => th
   129   else if not (has_consts ["All","op &"] (prop_of th))  
   130     | NONE => raise THM("forward_res2", 0, [st]);
   130   then th::ths (*no work to do, terminate*)
   131 
   131   else (*conjunction?*)
   132  (*Remove duplicates in P|Q by assuming ~P in Q
   132 	cnf_aux seen (th RS conjunct1,
   133    rls (initially []) accumulates assumptions of the form P==>False*)
   133 		      cnf_aux seen (th RS conjunct2, ths))
   134  fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
   134   handle THM _ => (*universal quant?*)
   135      handle THM _ => tryres(th,rls)
   135 	cnf_aux  seen (freeze_spec th,  ths)
   136      handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
   136   handle THM _ => (*disjunction?*)
   137                             [disj_FalseD1, disj_FalseD2, asm_rl])
   137     let val tac =
   138      handle THM _ => th;
   138 	(METAHYPS (resop (cnf_nil seen)) 1) THEN
   139 
   139 	(fn st' => st' |>
   140  (*Remove duplicate literals, if there are any*)
   140 		METAHYPS (resop (cnf_nil (literals (concl_of st') @ seen))) 1)
   141  fun nodups th =
   141     in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
   142      if null(findrep(literals(prop_of th))) then th
   142 and cnf_nil seen th = cnf_aux seen (th,[]);
   143      else nodups_aux [] th;
   143 
   144 
   144 (*Top-level call to cnf -- it's safe to reset name_ref*)
   145 
   145 fun cnf (th,ths) =
   146  (**** Generation of contrapositives ****)
   146    (name_ref := 19;  cnf (th RS conjunct1, cnf (th RS conjunct2, ths))
   147 
   147     handle THM _ => (*not a conjunction*) cnf_aux [] (th, ths));
   148  (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
   148 
   149  fun assoc_right th = assoc_right (th RS disj_assoc)
   149 (**** Removal of duplicate literals ****)
   150          handle THM _ => th;
   150 
   151 
   151 (*Forward proof, passing extra assumptions as theorems to the tactic*)
   152  (*Must check for negative literal first!*)
   152 fun forward_res2 nf hyps st =
   153  val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
   153   case Seq.pull
   154 
   154 	(REPEAT
   155  (*For ordinary resolution. *)
   155 	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
   156  val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
   156 	 st)
   157 
   157   of SOME(th,_) => th
   158  (*Create a goal or support clause, conclusing False*)
   158    | NONE => raise THM("forward_res2", 0, [st]);
   159  fun make_goal th =   (*Must check for negative literal first!*)
   159 
   160      make_goal (tryres(th, clause_rules))
   160 (*Remove duplicates in P|Q by assuming ~P in Q
   161    handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
   161   rls (initially []) accumulates assumptions of the form P==>False*)
   162 
   162 fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
   163  (*Sort clauses by number of literals*)
   163     handle THM _ => tryres(th,rls)
   164  fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
   164     handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
   165 
   165 			   [disj_FalseD1, disj_FalseD2, asm_rl])
   166  (*TAUTOLOGY CHECK SHOULD NOT BE NECESSARY!*)
   166     handle THM _ => th;
   167  fun sort_clauses ths = sort (make_ord fewerlits) (List.filter (not o is_taut) ths);
   167 
   168 
   168 (*Remove duplicate literals, if there are any*)
   169  (*Convert all suitable free variables to schematic variables*)
   169 fun nodups th =
   170  fun generalize th = forall_elim_vars 0 (forall_intr_frees th);
   170     if null(findrep(literals(prop_of th))) then th
   171 
   171     else nodups_aux [] th;
   172  (*Create a meta-level Horn clause*)
   172 
   173  fun make_horn crules th = make_horn crules (tryres(th,crules))
   173 
   174                            handle THM _ => th;
   174 (**** Generation of contrapositives ****)
   175 
   175 
   176  (*Generate Horn clauses for all contrapositives of a clause*)
   176 (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
   177  fun add_contras crules (th,hcs) =
   177 fun assoc_right th = assoc_right (th RS disj_assoc)
   178    let fun rots (0,th) = hcs
   178 	handle THM _ => th;
   179          | rots (k,th) = zero_var_indexes (make_horn crules th) ::
   179 
   180                          rots(k-1, assoc_right (th RS disj_comm))
   180 (*Must check for negative literal first!*)
   181    in case nliterals(prop_of th) of
   181 val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
   182          1 => th::hcs
   182 
   183        | n => rots(n, assoc_right th)
   183 (*For ordinary resolution. *)
   184    end;
   184 val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
   185 
   185 
   186  (*Use "theorem naming" to label the clauses*)
   186 (*Create a goal or support clause, conclusing False*)
   187  fun name_thms label =
   187 fun make_goal th =   (*Must check for negative literal first!*)
   188      let fun name1 (th, (k,ths)) =
   188     make_goal (tryres(th, clause_rules))
   189            (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
   189   handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
   190 
   190 
   191      in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
   191 (*Sort clauses by number of literals*)
   192 
   192 fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
   193  (*Find an all-negative support clause*)
   193 
   194  fun is_negative th = forall (not o #1) (literals (prop_of th));
   194 (*TAUTOLOGY CHECK SHOULD NOT BE NECESSARY!*)
   195 
   195 fun sort_clauses ths = sort (make_ord fewerlits) (List.filter (not o is_taut) ths);
   196  val neg_clauses = List.filter is_negative;
   196 
   197 
   197 (*Convert all suitable free variables to schematic variables*)
   198 
   198 fun generalize th = forall_elim_vars 0 (forall_intr_frees th);
   199  (***** MESON PROOF PROCEDURE *****)
   199 
   200 
   200 (*Create a meta-level Horn clause*)
   201  fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
   201 fun make_horn crules th = make_horn crules (tryres(th,crules))
   202             As) = rhyps(phi, A::As)
   202 			  handle THM _ => th;
   203    | rhyps (_, As) = As;
   203 
   204 
   204 (*Generate Horn clauses for all contrapositives of a clause*)
   205  (** Detecting repeated assumptions in a subgoal **)
   205 fun add_contras crules (th,hcs) =
   206 
   206   let fun rots (0,th) = hcs
   207  (*The stringtree detects repeated assumptions.*)
   207 	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
   208  fun ins_term (net,t) = Net.insert_term((t,t), net, op aconv);
   208 			rots(k-1, assoc_right (th RS disj_comm))
   209 
   209   in case nliterals(prop_of th) of
   210  (*detects repetitions in a list of terms*)
   210 	1 => th::hcs
   211  fun has_reps [] = false
   211       | n => rots(n, assoc_right th)
   212    | has_reps [_] = false
   212   end;
   213    | has_reps [t,u] = (t aconv u)
   213 
   214    | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
   214 (*Use "theorem naming" to label the clauses*)
   215                    handle INSERT => true;
   215 fun name_thms label =
   216 
   216     let fun name1 (th, (k,ths)) =
   217  (*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
   217 	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
   218  fun TRYALL_eq_assume_tac 0 st = Seq.single st
   218 
   219    | TRYALL_eq_assume_tac i st =
   219     in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
   220         TRYALL_eq_assume_tac (i-1) (eq_assumption i st)
   220 
   221         handle THM _ => TRYALL_eq_assume_tac (i-1) st;
   221 (*Find an all-negative support clause*)
   222 
   222 fun is_negative th = forall (not o #1) (literals (prop_of th));
   223  (*Loop checking: FAIL if trying to prove the same thing twice
   223 
   224    -- if *ANY* subgoal has repeated literals*)
   224 val neg_clauses = List.filter is_negative;
   225  fun check_tac st =
   225 
   226    if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
   226 
   227    then  Seq.empty  else  Seq.single st;
   227 (***** MESON PROOF PROCEDURE *****)
   228 
   228 
   229 
   229 fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
   230  (* net_resolve_tac actually made it slower... *)
   230 	   As) = rhyps(phi, A::As)
   231  fun prolog_step_tac horns i =
   231   | rhyps (_, As) = As;
   232      (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
   232 
   233      TRYALL eq_assume_tac;
   233 (** Detecting repeated assumptions in a subgoal **)
   234 
   234 
   235 
   235 (*The stringtree detects repeated assumptions.*)
   236 in
   236 fun ins_term (net,t) = Net.insert_term((t,t), net, op aconv);
       
   237 
       
   238 (*detects repetitions in a list of terms*)
       
   239 fun has_reps [] = false
       
   240   | has_reps [_] = false
       
   241   | has_reps [t,u] = (t aconv u)
       
   242   | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
       
   243 		  handle INSERT => true;
       
   244 
       
   245 (*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
       
   246 fun TRYALL_eq_assume_tac 0 st = Seq.single st
       
   247   | TRYALL_eq_assume_tac i st =
       
   248        TRYALL_eq_assume_tac (i-1) (eq_assumption i st)
       
   249        handle THM _ => TRYALL_eq_assume_tac (i-1) st;
       
   250 
       
   251 (*Loop checking: FAIL if trying to prove the same thing twice
       
   252   -- if *ANY* subgoal has repeated literals*)
       
   253 fun check_tac st =
       
   254   if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
       
   255   then  Seq.empty  else  Seq.single st;
       
   256 
       
   257 
       
   258 (* net_resolve_tac actually made it slower... *)
       
   259 fun prolog_step_tac horns i =
       
   260     (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
       
   261     TRYALL eq_assume_tac;
       
   262 
       
   263 
       
   264 
   237 
   265 
   238 
   266 
   239 (*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
   267 (*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
   240 local fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
   268 fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
   241 in
   269 
   242 fun size_of_subgoals st = foldr addconcl 0 (prems_of st)
   270 fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
   243 end;
   271 
   244 
   272 
   245 (*Negation Normal Form*)
   273 (*Negation Normal Form*)
   246 val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
   274 val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
   247                not_impD, not_iffD, not_allD, not_exD, not_notD];
   275                not_impD, not_iffD, not_allD, not_exD, not_notD];
   248 fun make_nnf th = make_nnf (tryres(th, nnf_rls))
   276 fun make_nnf th = make_nnf (tryres(th, nnf_rls))
   413                   (make_meta_clauses (make_clauses hyps))) 1)),
   441                   (make_meta_clauses (make_clauses hyps))) 1)),
   414 	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
   442 	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
   415      end);
   443      end);
   416 
   444 
   417 
   445 
   418 (** proof method setup **)
   446 (*** proof method setup ***)
   419 
       
   420 local
       
   421 
   447 
   422 fun meson_meth ctxt =
   448 fun meson_meth ctxt =
   423   Method.SIMPLE_METHOD' HEADGOAL
   449   Method.SIMPLE_METHOD' HEADGOAL
   424     (CHANGED_PROP o meson_claset_tac (local_claset_of ctxt));
   450     (CHANGED_PROP o meson_claset_tac (local_claset_of ctxt));
   425 
   451 
   429 
   455 
   430 val make_clauses_meth =
   456 val make_clauses_meth =
   431   Method.SIMPLE_METHOD' HEADGOAL
   457   Method.SIMPLE_METHOD' HEADGOAL
   432     (CHANGED_PROP o make_clauses_tac);
   458     (CHANGED_PROP o make_clauses_tac);
   433 
   459 
   434 in
       
   435 
   460 
   436 val meson_setup =
   461 val meson_setup =
   437  [Method.add_methods
   462  [Method.add_methods
   438   [("meson", Method.ctxt_args meson_meth, 
   463   [("meson", Method.ctxt_args meson_meth, 
   439     "The MESON resolution proof procedure"),
   464     "The MESON resolution proof procedure"),
   442    ("make_clauses", Method.no_args make_clauses_meth, 
   467    ("make_clauses", Method.no_args make_clauses_meth, 
   443     "Conversion to !!-quantified meta-level clauses")]];
   468     "Conversion to !!-quantified meta-level clauses")]];
   444 
   469 
   445 end;
   470 end;
   446 
   471 
   447 end;
   472 structure BasicMeson: BASIC_MESON = Meson;
       
   473 open BasicMeson;