src/HOL/Word/Bits_Int.thy
changeset 54854 3324a0078636
parent 54848 a303daddebbf
child 54874 c55c5dacd6a1
equal deleted inserted replaced
54853:a435932a9f12 54854:3324a0078636
       
     1 (* 
       
     2   Author: Jeremy Dawson and Gerwin Klein, NICTA
       
     3 
       
     4   Definitions and basic theorems for bit-wise logical operations 
       
     5   for integers expressed using Pls, Min, BIT,
       
     6   and converting them to and from lists of bools.
       
     7 *) 
       
     8 
       
     9 header {* Bitwise Operations on Binary Integers *}
       
    10 
       
    11 theory Bits_Int
       
    12 imports Bits Bit_Representation
       
    13 begin
       
    14 
       
    15 subsection {* Logical operations *}
       
    16 
       
    17 text "bit-wise logical operations on the int type"
       
    18 
       
    19 instantiation int :: bit
       
    20 begin
       
    21 
       
    22 definition int_not_def:
       
    23   "bitNOT = (\<lambda>x::int. - x - 1)"
       
    24 
       
    25 function bitAND_int where
       
    26   "bitAND_int x y =
       
    27     (if x = 0 then 0 else if x = -1 then y else
       
    28       (bin_rest x AND bin_rest y) BIT (bin_last x \<and> bin_last y))"
       
    29   by pat_completeness simp
       
    30 
       
    31 termination
       
    32   by (relation "measure (nat o abs o fst)", simp_all add: bin_rest_def)
       
    33 
       
    34 declare bitAND_int.simps [simp del]
       
    35 
       
    36 definition int_or_def:
       
    37   "bitOR = (\<lambda>x y::int. NOT (NOT x AND NOT y))"
       
    38 
       
    39 definition int_xor_def:
       
    40   "bitXOR = (\<lambda>x y::int. (x AND NOT y) OR (NOT x AND y))"
       
    41 
       
    42 instance ..
       
    43 
       
    44 end
       
    45 
       
    46 subsubsection {* Basic simplification rules *}
       
    47 
       
    48 lemma int_not_BIT [simp]:
       
    49   "NOT (w BIT b) = (NOT w) BIT (\<not> b)"
       
    50   unfolding int_not_def Bit_def by (cases b, simp_all)
       
    51 
       
    52 lemma int_not_simps [simp]:
       
    53   "NOT (0::int) = -1"
       
    54   "NOT (1::int) = -2"
       
    55   "NOT (- 1::int) = 0"
       
    56   "NOT (numeral w::int) = - numeral (w + Num.One)"
       
    57   "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)"
       
    58   "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)"
       
    59   unfolding int_not_def by simp_all
       
    60 
       
    61 lemma int_not_not [simp]: "NOT (NOT (x::int)) = x"
       
    62   unfolding int_not_def by simp
       
    63 
       
    64 lemma int_and_0 [simp]: "(0::int) AND x = 0"
       
    65   by (simp add: bitAND_int.simps)
       
    66 
       
    67 lemma int_and_m1 [simp]: "(-1::int) AND x = x"
       
    68   by (simp add: bitAND_int.simps)
       
    69 
       
    70 lemma int_and_Bits [simp]: 
       
    71   "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \<and> c)" 
       
    72   by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff)
       
    73 
       
    74 lemma int_or_zero [simp]: "(0::int) OR x = x"
       
    75   unfolding int_or_def by simp
       
    76 
       
    77 lemma int_or_minus1 [simp]: "(-1::int) OR x = -1"
       
    78   unfolding int_or_def by simp
       
    79 
       
    80 lemma int_or_Bits [simp]: 
       
    81   "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \<or> c)"
       
    82   unfolding int_or_def by simp
       
    83 
       
    84 lemma int_xor_zero [simp]: "(0::int) XOR x = x"
       
    85   unfolding int_xor_def by simp
       
    86 
       
    87 lemma int_xor_Bits [simp]: 
       
    88   "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \<or> c) \<and> \<not> (b \<and> c))"
       
    89   unfolding int_xor_def by auto
       
    90 
       
    91 subsubsection {* Binary destructors *}
       
    92 
       
    93 lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)"
       
    94   by (cases x rule: bin_exhaust, simp)
       
    95 
       
    96 lemma bin_last_NOT [simp]: "bin_last (NOT x) \<longleftrightarrow> \<not> bin_last x"
       
    97   by (cases x rule: bin_exhaust, simp)
       
    98 
       
    99 lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y"
       
   100   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   101 
       
   102 lemma bin_last_AND [simp]: "bin_last (x AND y) \<longleftrightarrow> bin_last x \<and> bin_last y"
       
   103   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   104 
       
   105 lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y"
       
   106   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   107 
       
   108 lemma bin_last_OR [simp]: "bin_last (x OR y) \<longleftrightarrow> bin_last x \<or> bin_last y"
       
   109   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   110 
       
   111 lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y"
       
   112   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   113 
       
   114 lemma bin_last_XOR [simp]: "bin_last (x XOR y) \<longleftrightarrow> (bin_last x \<or> bin_last y) \<and> \<not> (bin_last x \<and> bin_last y)"
       
   115   by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp)
       
   116 
       
   117 lemma bin_nth_ops:
       
   118   "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" 
       
   119   "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)"
       
   120   "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" 
       
   121   "!!x. bin_nth (NOT x) n = (~ bin_nth x n)"
       
   122   by (induct n) auto
       
   123 
       
   124 subsubsection {* Derived properties *}
       
   125 
       
   126 lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x"
       
   127   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   128 
       
   129 lemma int_xor_extra_simps [simp]:
       
   130   "w XOR (0::int) = w"
       
   131   "w XOR (-1::int) = NOT w"
       
   132   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   133 
       
   134 lemma int_or_extra_simps [simp]:
       
   135   "w OR (0::int) = w"
       
   136   "w OR (-1::int) = -1"
       
   137   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   138 
       
   139 lemma int_and_extra_simps [simp]:
       
   140   "w AND (0::int) = 0"
       
   141   "w AND (-1::int) = w"
       
   142   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   143 
       
   144 (* commutativity of the above *)
       
   145 lemma bin_ops_comm:
       
   146   shows
       
   147   int_and_comm: "!!y::int. x AND y = y AND x" and
       
   148   int_or_comm:  "!!y::int. x OR y = y OR x" and
       
   149   int_xor_comm: "!!y::int. x XOR y = y XOR x"
       
   150   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   151 
       
   152 lemma bin_ops_same [simp]:
       
   153   "(x::int) AND x = x" 
       
   154   "(x::int) OR x = x" 
       
   155   "(x::int) XOR x = 0"
       
   156   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   157 
       
   158 lemmas bin_log_esimps = 
       
   159   int_and_extra_simps  int_or_extra_simps  int_xor_extra_simps
       
   160   int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1
       
   161 
       
   162 (* basic properties of logical (bit-wise) operations *)
       
   163 
       
   164 lemma bbw_ao_absorb: 
       
   165   "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x"
       
   166   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   167 
       
   168 lemma bbw_ao_absorbs_other:
       
   169   "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)"
       
   170   "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)"
       
   171   "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)"
       
   172   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   173 
       
   174 lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other
       
   175 
       
   176 lemma int_xor_not:
       
   177   "!!y::int. (NOT x) XOR y = NOT (x XOR y) & 
       
   178         x XOR (NOT y) = NOT (x XOR y)"
       
   179   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   180 
       
   181 lemma int_and_assoc:
       
   182   "(x AND y) AND (z::int) = x AND (y AND z)"
       
   183   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   184 
       
   185 lemma int_or_assoc:
       
   186   "(x OR y) OR (z::int) = x OR (y OR z)"
       
   187   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   188 
       
   189 lemma int_xor_assoc:
       
   190   "(x XOR y) XOR (z::int) = x XOR (y XOR z)"
       
   191   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   192 
       
   193 lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc
       
   194 
       
   195 (* BH: Why are these declared as simp rules??? *)
       
   196 lemma bbw_lcs [simp]: 
       
   197   "(y::int) AND (x AND z) = x AND (y AND z)"
       
   198   "(y::int) OR (x OR z) = x OR (y OR z)"
       
   199   "(y::int) XOR (x XOR z) = x XOR (y XOR z)" 
       
   200   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   201 
       
   202 lemma bbw_not_dist: 
       
   203   "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" 
       
   204   "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)"
       
   205   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   206 
       
   207 lemma bbw_oa_dist: 
       
   208   "!!y z::int. (x AND y) OR z = 
       
   209           (x OR z) AND (y OR z)"
       
   210   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   211 
       
   212 lemma bbw_ao_dist: 
       
   213   "!!y z::int. (x OR y) AND z = 
       
   214           (x AND z) OR (y AND z)"
       
   215   by (auto simp add: bin_eq_iff bin_nth_ops)
       
   216 
       
   217 (*
       
   218 Why were these declared simp???
       
   219 declare bin_ops_comm [simp] bbw_assocs [simp] 
       
   220 *)
       
   221 
       
   222 subsubsection {* Simplification with numerals *}
       
   223 
       
   224 text {* Cases for @{text "0"} and @{text "-1"} are already covered by
       
   225   other simp rules. *}
       
   226 
       
   227 lemma bin_rl_eqI: "\<lbrakk>bin_rest x = bin_rest y; bin_last x = bin_last y\<rbrakk> \<Longrightarrow> x = y"
       
   228   by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT)
       
   229 
       
   230 lemma bin_rest_neg_numeral_BitM [simp]:
       
   231   "bin_rest (- numeral (Num.BitM w)) = - numeral w"
       
   232   by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT)
       
   233 
       
   234 lemma bin_last_neg_numeral_BitM [simp]:
       
   235   "bin_last (- numeral (Num.BitM w))"
       
   236   by (simp only: BIT_bin_simps [symmetric] bin_last_BIT)
       
   237 
       
   238 text {* FIXME: The rule sets below are very large (24 rules for each
       
   239   operator). Is there a simpler way to do this? *}
       
   240 
       
   241 lemma int_and_numerals [simp]:
       
   242   "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
       
   243   "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False"
       
   244   "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False"
       
   245   "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True"
       
   246   "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
       
   247   "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False"
       
   248   "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False"
       
   249   "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True"
       
   250   "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False"
       
   251   "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False"
       
   252   "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False"
       
   253   "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True"
       
   254   "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False"
       
   255   "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False"
       
   256   "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False"
       
   257   "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True"
       
   258   "(1::int) AND numeral (Num.Bit0 y) = 0"
       
   259   "(1::int) AND numeral (Num.Bit1 y) = 1"
       
   260   "(1::int) AND - numeral (Num.Bit0 y) = 0"
       
   261   "(1::int) AND - numeral (Num.Bit1 y) = 1"
       
   262   "numeral (Num.Bit0 x) AND (1::int) = 0"
       
   263   "numeral (Num.Bit1 x) AND (1::int) = 1"
       
   264   "- numeral (Num.Bit0 x) AND (1::int) = 0"
       
   265   "- numeral (Num.Bit1 x) AND (1::int) = 1"
       
   266   by (rule bin_rl_eqI, simp, simp)+
       
   267 
       
   268 lemma int_or_numerals [simp]:
       
   269   "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False"
       
   270   "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
       
   271   "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True"
       
   272   "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True"
       
   273   "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False"
       
   274   "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
       
   275   "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True"
       
   276   "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True"
       
   277   "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False"
       
   278   "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True"
       
   279   "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
       
   280   "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True"
       
   281   "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False"
       
   282   "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True"
       
   283   "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True"
       
   284   "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True"
       
   285   "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
       
   286   "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)"
       
   287   "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
       
   288   "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)"
       
   289   "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)"
       
   290   "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)"
       
   291   "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)"
       
   292   "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)"
       
   293   by (rule bin_rl_eqI, simp, simp)+
       
   294 
       
   295 lemma int_xor_numerals [simp]:
       
   296   "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False"
       
   297   "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True"
       
   298   "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True"
       
   299   "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False"
       
   300   "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False"
       
   301   "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True"
       
   302   "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True"
       
   303   "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False"
       
   304   "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False"
       
   305   "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True"
       
   306   "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True"
       
   307   "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False"
       
   308   "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False"
       
   309   "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True"
       
   310   "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True"
       
   311   "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False"
       
   312   "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
       
   313   "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)"
       
   314   "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
       
   315   "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))"
       
   316   "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)"
       
   317   "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)"
       
   318   "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)"
       
   319   "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))"
       
   320   by (rule bin_rl_eqI, simp, simp)+
       
   321 
       
   322 subsubsection {* Interactions with arithmetic *}
       
   323 
       
   324 lemma plus_and_or [rule_format]:
       
   325   "ALL y::int. (x AND y) + (x OR y) = x + y"
       
   326   apply (induct x rule: bin_induct)
       
   327     apply clarsimp
       
   328    apply clarsimp
       
   329   apply clarsimp
       
   330   apply (case_tac y rule: bin_exhaust)
       
   331   apply clarsimp
       
   332   apply (unfold Bit_def)
       
   333   apply clarsimp
       
   334   apply (erule_tac x = "x" in allE)
       
   335   apply simp
       
   336   done
       
   337 
       
   338 lemma le_int_or:
       
   339   "bin_sign (y::int) = 0 ==> x <= x OR y"
       
   340   apply (induct y arbitrary: x rule: bin_induct)
       
   341     apply clarsimp
       
   342    apply clarsimp
       
   343   apply (case_tac x rule: bin_exhaust)
       
   344   apply (case_tac b)
       
   345    apply (case_tac [!] bit)
       
   346      apply (auto simp: le_Bits)
       
   347   done
       
   348 
       
   349 lemmas int_and_le =
       
   350   xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or]
       
   351 
       
   352 (* interaction between bit-wise and arithmetic *)
       
   353 (* good example of bin_induction *)
       
   354 lemma bin_add_not: "x + NOT x = (-1::int)"
       
   355   apply (induct x rule: bin_induct)
       
   356     apply clarsimp
       
   357    apply clarsimp
       
   358   apply (case_tac bit, auto)
       
   359   done
       
   360 
       
   361 subsubsection {* Truncating results of bit-wise operations *}
       
   362 
       
   363 lemma bin_trunc_ao: 
       
   364   "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" 
       
   365   "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)"
       
   366   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
       
   367 
       
   368 lemma bin_trunc_xor: 
       
   369   "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = 
       
   370           bintrunc n (x XOR y)"
       
   371   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
       
   372 
       
   373 lemma bin_trunc_not: 
       
   374   "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)"
       
   375   by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr)
       
   376 
       
   377 (* want theorems of the form of bin_trunc_xor *)
       
   378 lemma bintr_bintr_i:
       
   379   "x = bintrunc n y ==> bintrunc n x = bintrunc n y"
       
   380   by auto
       
   381 
       
   382 lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i]
       
   383 lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i]
       
   384 
       
   385 subsection {* Setting and clearing bits *}
       
   386 
       
   387 primrec
       
   388   bin_sc :: "nat => bool => int => int"
       
   389 where
       
   390   Z: "bin_sc 0 b w = bin_rest w BIT b"
       
   391   | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w"
       
   392 
       
   393 (** nth bit, set/clear **)
       
   394 
       
   395 lemma bin_nth_sc [simp]: 
       
   396   "bin_nth (bin_sc n b w) n \<longleftrightarrow> b"
       
   397   by (induct n arbitrary: w) auto
       
   398 
       
   399 lemma bin_sc_sc_same [simp]: 
       
   400   "bin_sc n c (bin_sc n b w) = bin_sc n c w"
       
   401   by (induct n arbitrary: w) auto
       
   402 
       
   403 lemma bin_sc_sc_diff:
       
   404   "m ~= n ==> 
       
   405     bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)"
       
   406   apply (induct n arbitrary: w m)
       
   407    apply (case_tac [!] m)
       
   408      apply auto
       
   409   done
       
   410 
       
   411 lemma bin_nth_sc_gen: 
       
   412   "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)"
       
   413   by (induct n arbitrary: w m) (case_tac [!] m, auto)
       
   414   
       
   415 lemma bin_sc_nth [simp]:
       
   416   "(bin_sc n (bin_nth w n) w) = w"
       
   417   by (induct n arbitrary: w) auto
       
   418 
       
   419 lemma bin_sign_sc [simp]:
       
   420   "bin_sign (bin_sc n b w) = bin_sign w"
       
   421   by (induct n arbitrary: w) auto
       
   422   
       
   423 lemma bin_sc_bintr [simp]: 
       
   424   "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)"
       
   425   apply (induct n arbitrary: w m)
       
   426    apply (case_tac [!] w rule: bin_exhaust)
       
   427    apply (case_tac [!] m, auto)
       
   428   done
       
   429 
       
   430 lemma bin_clr_le:
       
   431   "bin_sc n False w <= w"
       
   432   apply (induct n arbitrary: w)
       
   433    apply (case_tac [!] w rule: bin_exhaust)
       
   434    apply (auto simp: le_Bits)
       
   435   done
       
   436 
       
   437 lemma bin_set_ge:
       
   438   "bin_sc n True w >= w"
       
   439   apply (induct n arbitrary: w)
       
   440    apply (case_tac [!] w rule: bin_exhaust)
       
   441    apply (auto simp: le_Bits)
       
   442   done
       
   443 
       
   444 lemma bintr_bin_clr_le:
       
   445   "bintrunc n (bin_sc m False w) <= bintrunc n w"
       
   446   apply (induct n arbitrary: w m)
       
   447    apply simp
       
   448   apply (case_tac w rule: bin_exhaust)
       
   449   apply (case_tac m)
       
   450    apply (auto simp: le_Bits)
       
   451   done
       
   452 
       
   453 lemma bintr_bin_set_ge:
       
   454   "bintrunc n (bin_sc m True w) >= bintrunc n w"
       
   455   apply (induct n arbitrary: w m)
       
   456    apply simp
       
   457   apply (case_tac w rule: bin_exhaust)
       
   458   apply (case_tac m)
       
   459    apply (auto simp: le_Bits)
       
   460   done
       
   461 
       
   462 lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0"
       
   463   by (induct n) auto
       
   464 
       
   465 lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1"
       
   466   by (induct n) auto
       
   467   
       
   468 lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP
       
   469 
       
   470 lemma bin_sc_minus:
       
   471   "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w"
       
   472   by auto
       
   473 
       
   474 lemmas bin_sc_Suc_minus = 
       
   475   trans [OF bin_sc_minus [symmetric] bin_sc.Suc]
       
   476 
       
   477 lemma bin_sc_numeral [simp]:
       
   478   "bin_sc (numeral k) b w =
       
   479     bin_sc (pred_numeral k) b (bin_rest w) BIT bin_last w"
       
   480   by (simp add: numeral_eq_Suc)
       
   481 
       
   482 
       
   483 subsection {* Splitting and concatenation *}
       
   484 
       
   485 definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int"
       
   486 where
       
   487   "bin_rcat n = foldl (\<lambda>u v. bin_cat u n v) 0"
       
   488 
       
   489 fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
       
   490 where
       
   491   "bin_rsplit_aux n m c bs =
       
   492     (if m = 0 | n = 0 then bs else
       
   493       let (a, b) = bin_split n c 
       
   494       in bin_rsplit_aux n (m - n) a (b # bs))"
       
   495 
       
   496 definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
       
   497 where
       
   498   "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []"
       
   499 
       
   500 fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list"
       
   501 where
       
   502   "bin_rsplitl_aux n m c bs =
       
   503     (if m = 0 | n = 0 then bs else
       
   504       let (a, b) = bin_split (min m n) c 
       
   505       in bin_rsplitl_aux n (m - n) a (b # bs))"
       
   506 
       
   507 definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list"
       
   508 where
       
   509   "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []"
       
   510 
       
   511 declare bin_rsplit_aux.simps [simp del]
       
   512 declare bin_rsplitl_aux.simps [simp del]
       
   513 
       
   514 lemma bin_sign_cat: 
       
   515   "bin_sign (bin_cat x n y) = bin_sign x"
       
   516   by (induct n arbitrary: y) auto
       
   517 
       
   518 lemma bin_cat_Suc_Bit:
       
   519   "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b"
       
   520   by auto
       
   521 
       
   522 lemma bin_nth_cat: 
       
   523   "bin_nth (bin_cat x k y) n = 
       
   524     (if n < k then bin_nth y n else bin_nth x (n - k))"
       
   525   apply (induct k arbitrary: n y)
       
   526    apply clarsimp
       
   527   apply (case_tac n, auto)
       
   528   done
       
   529 
       
   530 lemma bin_nth_split:
       
   531   "bin_split n c = (a, b) ==> 
       
   532     (ALL k. bin_nth a k = bin_nth c (n + k)) & 
       
   533     (ALL k. bin_nth b k = (k < n & bin_nth c k))"
       
   534   apply (induct n arbitrary: b c)
       
   535    apply clarsimp
       
   536   apply (clarsimp simp: Let_def split: prod.split_asm)
       
   537   apply (case_tac k)
       
   538   apply auto
       
   539   done
       
   540 
       
   541 lemma bin_cat_assoc: 
       
   542   "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" 
       
   543   by (induct n arbitrary: z) auto
       
   544 
       
   545 lemma bin_cat_assoc_sym:
       
   546   "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z"
       
   547   apply (induct n arbitrary: z m, clarsimp)
       
   548   apply (case_tac m, auto)
       
   549   done
       
   550 
       
   551 lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w"
       
   552   by (induct n arbitrary: w) auto
       
   553 
       
   554 lemma bintr_cat1: 
       
   555   "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b"
       
   556   by (induct n arbitrary: b) auto
       
   557     
       
   558 lemma bintr_cat: "bintrunc m (bin_cat a n b) = 
       
   559     bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)"
       
   560   by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr)
       
   561     
       
   562 lemma bintr_cat_same [simp]: 
       
   563   "bintrunc n (bin_cat a n b) = bintrunc n b"
       
   564   by (auto simp add : bintr_cat)
       
   565 
       
   566 lemma cat_bintr [simp]: 
       
   567   "bin_cat a n (bintrunc n b) = bin_cat a n b"
       
   568   by (induct n arbitrary: b) auto
       
   569 
       
   570 lemma split_bintrunc: 
       
   571   "bin_split n c = (a, b) ==> b = bintrunc n c"
       
   572   by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm)
       
   573 
       
   574 lemma bin_cat_split:
       
   575   "bin_split n w = (u, v) ==> w = bin_cat u n v"
       
   576   by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm)
       
   577 
       
   578 lemma bin_split_cat:
       
   579   "bin_split n (bin_cat v n w) = (v, bintrunc n w)"
       
   580   by (induct n arbitrary: w) auto
       
   581 
       
   582 lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)"
       
   583   by (induct n) auto
       
   584 
       
   585 lemma bin_split_minus1 [simp]:
       
   586   "bin_split n -1 = (-1, bintrunc n -1)"
       
   587   by (induct n) auto
       
   588 
       
   589 lemma bin_split_trunc:
       
   590   "bin_split (min m n) c = (a, b) ==> 
       
   591     bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)"
       
   592   apply (induct n arbitrary: m b c, clarsimp)
       
   593   apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
       
   594   apply (case_tac m)
       
   595    apply (auto simp: Let_def split: prod.split_asm)
       
   596   done
       
   597 
       
   598 lemma bin_split_trunc1:
       
   599   "bin_split n c = (a, b) ==> 
       
   600     bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)"
       
   601   apply (induct n arbitrary: m b c, clarsimp)
       
   602   apply (simp add: bin_rest_trunc Let_def split: prod.split_asm)
       
   603   apply (case_tac m)
       
   604    apply (auto simp: Let_def split: prod.split_asm)
       
   605   done
       
   606 
       
   607 lemma bin_cat_num:
       
   608   "bin_cat a n b = a * 2 ^ n + bintrunc n b"
       
   609   apply (induct n arbitrary: b, clarsimp)
       
   610   apply (simp add: Bit_def)
       
   611   done
       
   612 
       
   613 lemma bin_split_num:
       
   614   "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)"
       
   615   apply (induct n arbitrary: b, simp)
       
   616   apply (simp add: bin_rest_def zdiv_zmult2_eq)
       
   617   apply (case_tac b rule: bin_exhaust)
       
   618   apply simp
       
   619   apply (simp add: Bit_def mod_mult_mult1 p1mod22k)
       
   620   done
       
   621 
       
   622 subsection {* Miscellaneous lemmas *}
       
   623 
       
   624 lemma nth_2p_bin: 
       
   625   "bin_nth (2 ^ n) m = (m = n)"
       
   626   apply (induct n arbitrary: m)
       
   627    apply clarsimp
       
   628    apply safe
       
   629    apply (case_tac m) 
       
   630     apply (auto simp: Bit_B0_2t [symmetric])
       
   631   done
       
   632 
       
   633 (* for use when simplifying with bin_nth_Bit *)
       
   634 
       
   635 lemma ex_eq_or:
       
   636   "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))"
       
   637   by auto
       
   638 
       
   639 lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True"
       
   640   unfolding Bit_B1
       
   641   by (induct n) simp_all
       
   642 
       
   643 lemma mod_BIT:
       
   644   "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit"
       
   645 proof -
       
   646   have "bin mod 2 ^ n < 2 ^ n" by simp
       
   647   then have "bin mod 2 ^ n \<le> 2 ^ n - 1" by simp
       
   648   then have "2 * (bin mod 2 ^ n) \<le> 2 * (2 ^ n - 1)"
       
   649     by (rule mult_left_mono) simp
       
   650   then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp
       
   651   then show ?thesis
       
   652     by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"]
       
   653       mod_pos_pos_trivial)
       
   654 qed
       
   655 
       
   656 lemma AND_mod:
       
   657   fixes x :: int
       
   658   shows "x AND 2 ^ n - 1 = x mod 2 ^ n"
       
   659 proof (induct x arbitrary: n rule: bin_induct)
       
   660   case 1
       
   661   then show ?case
       
   662     by simp
       
   663 next
       
   664   case 2
       
   665   then show ?case
       
   666     by (simp, simp add: m1mod2k)
       
   667 next
       
   668   case (3 bin bit)
       
   669   show ?case
       
   670   proof (cases n)
       
   671     case 0
       
   672     then show ?thesis by simp
       
   673   next
       
   674     case (Suc m)
       
   675     with 3 show ?thesis
       
   676       by (simp only: power_BIT mod_BIT int_and_Bits) simp
       
   677   qed
       
   678 qed
       
   679 
       
   680 end
       
   681