src/HOL/Probability/Finite_Product_Measure.thy
changeset 61988 34b51f436e92
parent 61808 fc1556774cfe
child 62390 842917225d56
equal deleted inserted replaced
61987:305baa3fc220 61988:34b51f436e92
   167 
   167 
   168 abbreviation
   168 abbreviation
   169   "Pi\<^sub>M I M \<equiv> PiM I M"
   169   "Pi\<^sub>M I M \<equiv> PiM I M"
   170 
   170 
   171 syntax
   171 syntax
   172   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3PIM _:_./ _)" 10)
       
   173 syntax (xsymbols)
       
   174   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^sub>M _\<in>_./ _)"  10)
   172   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^sub>M _\<in>_./ _)"  10)
   175 translations
   173 translations
   176   "PIM x:I. M" == "CONST PiM I (%x. M)"
   174   "\<Pi>\<^sub>M x\<in>I. M" == "CONST PiM I (%x. M)"
   177 
   175 
   178 lemma extend_measure_cong:
   176 lemma extend_measure_cong:
   179   assumes "\<Omega> = \<Omega>'" "I = I'" "G = G'" "\<And>i. i \<in> I' \<Longrightarrow> \<mu> i = \<mu>' i"
   177   assumes "\<Omega> = \<Omega>'" "I = I'" "G = G'" "\<And>i. i \<in> I' \<Longrightarrow> \<mu> i = \<mu>' i"
   180   shows "extend_measure \<Omega> I G \<mu> = extend_measure \<Omega>' I' G' \<mu>'"
   178   shows "extend_measure \<Omega> I G \<mu> = extend_measure \<Omega>' I' G' \<mu>'"
   181   unfolding extend_measure_def by (auto simp add: assms)
   179   unfolding extend_measure_def by (auto simp add: assms)
   505   assumes "I = J" "\<And>i. i \<in> J \<Longrightarrow> sets (M i) = sets (N i)" shows "sets (PiM I M) = sets (PiM J N)"
   503   assumes "I = J" "\<And>i. i \<in> J \<Longrightarrow> sets (M i) = sets (N i)" shows "sets (PiM I M) = sets (PiM J N)"
   506   using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single cong: PiE_cong conj_cong)
   504   using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single cong: PiE_cong conj_cong)
   507 
   505 
   508 lemma sets_PiM_I:
   506 lemma sets_PiM_I:
   509   assumes "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)"
   507   assumes "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)"
   510   shows "prod_emb I M J (PIE j:J. E j) \<in> sets (PIM i:I. M i)"
   508   shows "prod_emb I M J (PIE j:J. E j) \<in> sets (\<Pi>\<^sub>M i\<in>I. M i)"
   511 proof cases
   509 proof cases
   512   assume "J = {}"
   510   assume "J = {}"
   513   then have "prod_emb I M J (PIE j:J. E j) = (PIE j:I. space (M j))"
   511   then have "prod_emb I M J (PIE j:J. E j) = (PIE j:I. space (M j))"
   514     by (auto simp: prod_emb_def)
   512     by (auto simp: prod_emb_def)
   515   then show ?thesis
   513   then show ?thesis
   572     using A f by (auto intro!: measurable_sets)
   570     using A f by (auto intro!: measurable_sets)
   573 qed fact
   571 qed fact
   574 
   572 
   575 lemma sets_PiM_I_finite[measurable]:
   573 lemma sets_PiM_I_finite[measurable]:
   576   assumes "finite I" and sets: "(\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i))"
   574   assumes "finite I" and sets: "(\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i))"
   577   shows "(PIE j:I. E j) \<in> sets (PIM i:I. M i)"
   575   shows "(PIE j:I. E j) \<in> sets (\<Pi>\<^sub>M i\<in>I. M i)"
   578   using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] \<open>finite I\<close> sets by auto
   576   using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] \<open>finite I\<close> sets by auto
   579 
   577 
   580 lemma measurable_component_singleton[measurable (raw)]:
   578 lemma measurable_component_singleton[measurable (raw)]:
   581   assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^sub>M I M) (M i)"
   579   assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^sub>M I M) (M i)"
   582 proof (unfold measurable_def, intro CollectI conjI ballI)
   580 proof (unfold measurable_def, intro CollectI conjI ballI)