src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy
changeset 73790 370ce138d1bd
parent 72379 504fe7365820
child 73928 3b76524f5a85
child 73932 fd21b4a93043
equal deleted inserted replaced
73787:493b1ae188da 73790:370ce138d1bd
  2480 
  2480 
  2481 text\<open>Every bounded entire function is a constant function.\<close>
  2481 text\<open>Every bounded entire function is a constant function.\<close>
  2482 theorem Liouville_theorem:
  2482 theorem Liouville_theorem:
  2483     assumes holf: "f holomorphic_on UNIV"
  2483     assumes holf: "f holomorphic_on UNIV"
  2484         and bf: "bounded (range f)"
  2484         and bf: "bounded (range f)"
  2485     obtains c where "\<And>z. f z = c"
  2485       shows "f constant_on UNIV"
  2486 proof -
  2486 proof -
  2487   obtain B where "\<And>z. cmod (f z) \<le> B"
  2487   obtain B where "\<And>z. cmod (f z) \<le> B"
  2488     by (meson bf bounded_pos rangeI)
  2488     by (meson bf bounded_pos rangeI)
  2489   then show ?thesis
  2489   then show ?thesis
  2490     using Liouville_polynomial [OF holf, of 0 B 0, simplified] that by blast
  2490     using Liouville_polynomial [OF holf, of 0 B 0, simplified]
       
  2491     by (meson constant_on_def)
  2491 qed
  2492 qed
  2492 
  2493 
  2493 text\<open>A holomorphic function f has only isolated zeros unless f is 0.\<close>
  2494 text\<open>A holomorphic function f has only isolated zeros unless f is 0.\<close>
  2494 
  2495 
  2495 lemma powser_0_nonzero:
  2496 lemma powser_0_nonzero: