src/ZF/OrderArith.thy
changeset 13269 3ba9be497c33
parent 13140 6d97dbb189a9
child 13356 c9cfe1638bf2
equal deleted inserted replaced
13268:240509babf00 13269:3ba9be497c33
    36 
    36 
    37 (** Rewrite rules.  Can be used to obtain introduction rules **)
    37 (** Rewrite rules.  Can be used to obtain introduction rules **)
    38 
    38 
    39 lemma radd_Inl_Inr_iff [iff]: 
    39 lemma radd_Inl_Inr_iff [iff]: 
    40     "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
    40     "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
    41 apply (unfold radd_def)
    41 apply (unfold radd_def, blast)
    42 apply blast
       
    43 done
    42 done
    44 
    43 
    45 lemma radd_Inl_iff [iff]: 
    44 lemma radd_Inl_iff [iff]: 
    46     "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
    45     "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
    47 apply (unfold radd_def)
    46 apply (unfold radd_def, blast)
    48 apply blast
       
    49 done
    47 done
    50 
    48 
    51 lemma radd_Inr_iff [iff]: 
    49 lemma radd_Inr_iff [iff]: 
    52     "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
    50     "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
    53 apply (unfold radd_def)
    51 apply (unfold radd_def, blast)
    54 apply blast
       
    55 done
    52 done
    56 
    53 
    57 lemma radd_Inr_Inl_iff [iff]: 
    54 lemma radd_Inr_Inl_iff [iff]: 
    58     "<Inr(b), Inl(a)> : radd(A,r,B,s) <->  False"
    55     "<Inr(b), Inl(a)> : radd(A,r,B,s) <->  False"
    59 apply (unfold radd_def)
    56 apply (unfold radd_def, blast)
    60 apply blast
       
    61 done
    57 done
    62 
    58 
    63 (** Elimination Rule **)
    59 (** Elimination Rule **)
    64 
    60 
    65 lemma raddE:
    61 lemma raddE:
    66     "[| <p',p> : radd(A,r,B,s);                  
    62     "[| <p',p> : radd(A,r,B,s);                  
    67         !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
    63         !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
    68         !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
    64         !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
    69         !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
    65         !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
    70      |] ==> Q"
    66      |] ==> Q"
    71 apply (unfold radd_def)
    67 apply (unfold radd_def, blast) 
    72 apply (blast intro: elim:); 
       
    73 done
    68 done
    74 
    69 
    75 (** Type checking **)
    70 (** Type checking **)
    76 
    71 
    77 lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
    72 lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
    83 
    78 
    84 (** Linearity **)
    79 (** Linearity **)
    85 
    80 
    86 lemma linear_radd: 
    81 lemma linear_radd: 
    87     "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
    82     "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
    88 apply (unfold linear_def)
    83 apply (unfold linear_def, blast) 
    89 apply (blast intro: elim:); 
       
    90 done
    84 done
    91 
    85 
    92 
    86 
    93 (** Well-foundedness **)
    87 (** Well-foundedness **)
    94 
    88 
    98 (*Proving the lemma, which is needed twice!*)
    92 (*Proving the lemma, which is needed twice!*)
    99  prefer 2
    93  prefer 2
   100  apply (erule_tac V = "y : A + B" in thin_rl)
    94  apply (erule_tac V = "y : A + B" in thin_rl)
   101  apply (rule_tac ballI)
    95  apply (rule_tac ballI)
   102  apply (erule_tac r = "r" and a = "x" in wf_on_induct, assumption)
    96  apply (erule_tac r = "r" and a = "x" in wf_on_induct, assumption)
   103  apply (blast intro: elim:); 
    97  apply blast 
   104 (*Returning to main part of proof*)
    98 (*Returning to main part of proof*)
   105 apply safe
    99 apply safe
   106 apply blast
   100 apply blast
   107 apply (erule_tac r = "s" and a = "ya" in wf_on_induct , assumption)
   101 apply (erule_tac r = "s" and a = "ya" in wf_on_induct, assumption, blast) 
   108 apply (blast intro: elim:); 
       
   109 done
   102 done
   110 
   103 
   111 lemma wf_radd: "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
   104 lemma wf_radd: "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
   112 apply (simp add: wf_iff_wf_on_field)
   105 apply (simp add: wf_iff_wf_on_field)
   113 apply (rule wf_on_subset_A [OF _ field_radd])
   106 apply (rule wf_on_subset_A [OF _ field_radd])
   124 (** An ord_iso congruence law **)
   117 (** An ord_iso congruence law **)
   125 
   118 
   126 lemma sum_bij:
   119 lemma sum_bij:
   127      "[| f: bij(A,C);  g: bij(B,D) |]
   120      "[| f: bij(A,C);  g: bij(B,D) |]
   128       ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
   121       ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
   129 apply (rule_tac d = "case (%x. Inl (converse (f) `x) , %y. Inr (converse (g) `y))" in lam_bijective)
   122 apply (rule_tac d = "case (%x. Inl (converse (f) `x), %y. Inr (converse (g) `y))" in lam_bijective)
   130 apply (typecheck add: bij_is_inj inj_is_fun) 
   123 apply (typecheck add: bij_is_inj inj_is_fun) 
   131 apply (auto simp add: left_inverse_bij right_inverse_bij) 
   124 apply (auto simp add: left_inverse_bij right_inverse_bij) 
   132 done
   125 done
   133 
   126 
   134 lemma sum_ord_iso_cong: 
   127 lemma sum_ord_iso_cong: 
   161 
   154 
   162 lemma sum_assoc_ord_iso:
   155 lemma sum_assoc_ord_iso:
   163      "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
   156      "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
   164       : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
   157       : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
   165                 A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
   158                 A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
   166 apply (rule sum_assoc_bij [THEN ord_isoI])
   159 apply (rule sum_assoc_bij [THEN ord_isoI], auto)
   167 apply auto
       
   168 done
   160 done
   169 
   161 
   170 
   162 
   171 (**** Multiplication of relations -- lexicographic product ****)
   163 (**** Multiplication of relations -- lexicographic product ****)
   172 
   164 
   175 lemma  rmult_iff [iff]: 
   167 lemma  rmult_iff [iff]: 
   176     "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
   168     "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
   177             (<a',a>: r  & a':A & a:A & b': B & b: B) |   
   169             (<a',a>: r  & a':A & a:A & b': B & b: B) |   
   178             (<b',b>: s  & a'=a & a:A & b': B & b: B)"
   170             (<b',b>: s  & a'=a & a:A & b': B & b: B)"
   179 
   171 
   180 apply (unfold rmult_def)
   172 apply (unfold rmult_def, blast)
   181 apply blast
       
   182 done
   173 done
   183 
   174 
   184 lemma rmultE: 
   175 lemma rmultE: 
   185     "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
   176     "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
   186         [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
   177         [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
   187         [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
   178         [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
   188      |] ==> Q"
   179      |] ==> Q"
   189 apply (blast intro: elim:); 
   180 apply blast 
   190 done
   181 done
   191 
   182 
   192 (** Type checking **)
   183 (** Type checking **)
   193 
   184 
   194 lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
   185 lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
   200 
   191 
   201 (** Linearity **)
   192 (** Linearity **)
   202 
   193 
   203 lemma linear_rmult:
   194 lemma linear_rmult:
   204     "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
   195     "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
   205 apply (simp add: linear_def); 
   196 apply (simp add: linear_def, blast) 
   206 apply (blast intro: elim:); 
       
   207 done
   197 done
   208 
   198 
   209 (** Well-foundedness **)
   199 (** Well-foundedness **)
   210 
   200 
   211 lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
   201 lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
   212 apply (rule wf_onI2)
   202 apply (rule wf_onI2)
   213 apply (erule SigmaE)
   203 apply (erule SigmaE)
   214 apply (erule ssubst)
   204 apply (erule ssubst)
   215 apply (subgoal_tac "ALL b:B. <x,b>: Ba")
   205 apply (subgoal_tac "ALL b:B. <x,b>: Ba", blast)
   216 apply blast
   206 apply (erule_tac a = "x" in wf_on_induct, assumption)
   217 apply (erule_tac a = "x" in wf_on_induct , assumption)
       
   218 apply (rule ballI)
   207 apply (rule ballI)
   219 apply (erule_tac a = "b" in wf_on_induct , assumption)
   208 apply (erule_tac a = "b" in wf_on_induct, assumption)
   220 apply (best elim!: rmultE bspec [THEN mp])
   209 apply (best elim!: rmultE bspec [THEN mp])
   221 done
   210 done
   222 
   211 
   223 
   212 
   224 lemma wf_rmult: "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
   213 lemma wf_rmult: "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
   255 apply (simp_all add: bij_is_fun [THEN apply_type])
   244 apply (simp_all add: bij_is_fun [THEN apply_type])
   256 apply (blast intro: bij_is_inj [THEN inj_apply_equality])
   245 apply (blast intro: bij_is_inj [THEN inj_apply_equality])
   257 done
   246 done
   258 
   247 
   259 lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
   248 lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
   260 apply (rule_tac d = "snd" in lam_bijective)
   249 by (rule_tac d = "snd" in lam_bijective, auto)
   261 apply auto
       
   262 done
       
   263 
   250 
   264 (*Used??*)
   251 (*Used??*)
   265 lemma singleton_prod_ord_iso:
   252 lemma singleton_prod_ord_iso:
   266      "well_ord({x},xr) ==>   
   253      "well_ord({x},xr) ==>   
   267           (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
   254           (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
   277        (lam x:C*B + D. case(%x. x, %y.<a,y>, x))  
   264        (lam x:C*B + D. case(%x. x, %y.<a,y>, x))  
   278        : bij(C*B + D, C*B Un {a}*D)"
   265        : bij(C*B + D, C*B Un {a}*D)"
   279 apply (rule subst_elem)
   266 apply (rule subst_elem)
   280 apply (rule id_bij [THEN sum_bij, THEN comp_bij])
   267 apply (rule id_bij [THEN sum_bij, THEN comp_bij])
   281 apply (rule singleton_prod_bij)
   268 apply (rule singleton_prod_bij)
   282 apply (rule sum_disjoint_bij)
   269 apply (rule sum_disjoint_bij, blast)
   283 apply blast
       
   284 apply (simp (no_asm_simp) cong add: case_cong)
   270 apply (simp (no_asm_simp) cong add: case_cong)
   285 apply (rule comp_lam [THEN trans, symmetric])
   271 apply (rule comp_lam [THEN trans, symmetric])
   286 apply (fast elim!: case_type)
   272 apply (fast elim!: case_type)
   287 apply (simp (no_asm_simp) add: case_case)
   273 apply (simp (no_asm_simp) add: case_case)
   288 done
   274 done
   301 (** Distributive law **)
   287 (** Distributive law **)
   302 
   288 
   303 lemma sum_prod_distrib_bij:
   289 lemma sum_prod_distrib_bij:
   304      "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   290      "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   305       : bij((A+B)*C, (A*C)+(B*C))"
   291       : bij((A+B)*C, (A*C)+(B*C))"
   306 apply (rule_tac d = "case (%<x,y>.<Inl (x) ,y>, %<x,y>.<Inr (x) ,y>) " 
   292 apply (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " 
   307        in lam_bijective)
   293        in lam_bijective)
   308 apply auto
   294 apply auto
   309 done
   295 done
   310 
   296 
   311 lemma sum_prod_distrib_ord_iso:
   297 lemma sum_prod_distrib_ord_iso:
   312  "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   298  "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
   313   : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
   299   : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
   314             (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
   300             (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
   315 apply (rule sum_prod_distrib_bij [THEN ord_isoI])
   301 apply (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
   316 apply auto
       
   317 done
   302 done
   318 
   303 
   319 (** Associativity **)
   304 (** Associativity **)
   320 
   305 
   321 lemma prod_assoc_bij:
   306 lemma prod_assoc_bij:
   322      "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
   307      "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
   323 apply (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective)
   308 apply (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
   324 apply auto
       
   325 done
   309 done
   326 
   310 
   327 lemma prod_assoc_ord_iso:
   311 lemma prod_assoc_ord_iso:
   328  "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
   312  "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
   329   : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
   313   : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
   330             A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
   314             A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
   331 apply (rule prod_assoc_bij [THEN ord_isoI])
   315 apply (rule prod_assoc_bij [THEN ord_isoI], auto)
   332 apply auto
       
   333 done
   316 done
   334 
   317 
   335 (**** Inverse image of a relation ****)
   318 (**** Inverse image of a relation ****)
   336 
   319 
   337 (** Rewrite rule **)
   320 (** Rewrite rule **)
   338 
   321 
   339 lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
   322 lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
   340 apply (unfold rvimage_def)
   323 by (unfold rvimage_def, blast)
   341 apply blast
       
   342 done
       
   343 
   324 
   344 (** Type checking **)
   325 (** Type checking **)
   345 
   326 
   346 lemma rvimage_type: "rvimage(A,f,r) <= A*A"
   327 lemma rvimage_type: "rvimage(A,f,r) <= A*A"
   347 apply (unfold rvimage_def)
   328 apply (unfold rvimage_def)
   349 done
   330 done
   350 
   331 
   351 lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
   332 lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
   352 
   333 
   353 lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
   334 lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
   354 apply (unfold rvimage_def)
   335 by (unfold rvimage_def, blast)
   355 apply blast
       
   356 done
       
   357 
   336 
   358 
   337 
   359 (** Partial Ordering Properties **)
   338 (** Partial Ordering Properties **)
   360 
   339 
   361 lemma irrefl_rvimage: 
   340 lemma irrefl_rvimage: 
   379 (** Linearity **)
   358 (** Linearity **)
   380 
   359 
   381 lemma linear_rvimage:
   360 lemma linear_rvimage:
   382     "[| f: inj(A,B);  linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
   361     "[| f: inj(A,B);  linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
   383 apply (simp add: inj_def linear_def rvimage_iff) 
   362 apply (simp add: inj_def linear_def rvimage_iff) 
   384 apply (blast intro: apply_funtype); 
   363 apply (blast intro: apply_funtype) 
   385 done
   364 done
   386 
   365 
   387 lemma tot_ord_rvimage: 
   366 lemma tot_ord_rvimage: 
   388     "[| f: inj(A,B);  tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
   367     "[| f: inj(A,B);  tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
   389 apply (unfold tot_ord_def)
   368 apply (unfold tot_ord_def)
   398 apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
   377 apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
   399 apply clarify
   378 apply clarify
   400 apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
   379 apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
   401  apply (erule allE)
   380  apply (erule allE)
   402  apply (erule impE)
   381  apply (erule impE)
   403  apply assumption; 
   382  apply assumption
   404  apply blast
   383  apply blast
   405 apply (blast intro: elim:); 
   384 apply blast 
   406 done
   385 done
   407 
   386 
   408 lemma wf_on_rvimage: "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
   387 lemma wf_on_rvimage: "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
   409 apply (rule wf_onI2)
   388 apply (rule wf_onI2)
   410 apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
   389 apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
   429 apply (simp add: rvimage_iff)
   408 apply (simp add: rvimage_iff)
   430 done
   409 done
   431 
   410 
   432 lemma ord_iso_rvimage_eq: 
   411 lemma ord_iso_rvimage_eq: 
   433     "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
   412     "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
   434 apply (unfold ord_iso_def rvimage_def)
   413 apply (unfold ord_iso_def rvimage_def, blast)
   435 apply blast
       
   436 done
   414 done
   437 
   415 
   438 
   416 
   439 (** The "measure" relation is useful with wfrec **)
   417 (** The "measure" relation is useful with wfrec **)
   440 
   418 
   441 lemma measure_eq_rvimage_Memrel:
   419 lemma measure_eq_rvimage_Memrel:
   442      "measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
   420      "measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
   443 apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
   421 apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
   444 apply (rule equalityI)
   422 apply (rule equalityI, auto)
   445 apply auto
       
   446 apply (auto intro: Ord_in_Ord simp add: lt_def)
   423 apply (auto intro: Ord_in_Ord simp add: lt_def)
   447 done
   424 done
   448 
   425 
   449 lemma wf_measure [iff]: "wf(measure(A,f))"
   426 lemma wf_measure [iff]: "wf(measure(A,f))"
   450 apply (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
   427 apply (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)