src/HOL/SMT_Examples/SMT_Examples.thy
changeset 58061 3d060f43accb
parent 57994 68b283f9f826
child 58367 8af1e68d7e1a
equal deleted inserted replaced
58060:835b5443b978 58061:3d060f43accb
     6 
     6 
     7 theory SMT_Examples
     7 theory SMT_Examples
     8 imports Complex_Main
     8 imports Complex_Main
     9 begin
     9 begin
    10 
    10 
    11 declare [[smt2_certificates = "SMT_Examples.certs2"]]
    11 declare [[smt_certificates = "SMT_Examples.certs2"]]
    12 declare [[smt2_read_only_certificates = true]]
    12 declare [[smt_read_only_certificates = true]]
    13 
    13 
    14 
    14 
    15 section {* Propositional and first-order logic *}
    15 section {* Propositional and first-order logic *}
    16 
    16 
    17 lemma "True" by smt2
    17 lemma "True" by smt
    18 lemma "p \<or> \<not>p" by smt2
    18 lemma "p \<or> \<not>p" by smt
    19 lemma "(p \<and> True) = p" by smt2
    19 lemma "(p \<and> True) = p" by smt
    20 lemma "(p \<or> q) \<and> \<not>p \<Longrightarrow> q" by smt2
    20 lemma "(p \<or> q) \<and> \<not>p \<Longrightarrow> q" by smt
    21 lemma "(a \<and> b) \<or> (c \<and> d) \<Longrightarrow> (a \<and> b) \<or> (c \<and> d)" by smt2
    21 lemma "(a \<and> b) \<or> (c \<and> d) \<Longrightarrow> (a \<and> b) \<or> (c \<and> d)" by smt
    22 lemma "(p1 \<and> p2) \<or> p3 \<longrightarrow> (p1 \<longrightarrow> (p3 \<and> p2) \<or> (p1 \<and> p3)) \<or> p1" by smt2
    22 lemma "(p1 \<and> p2) \<or> p3 \<longrightarrow> (p1 \<longrightarrow> (p3 \<and> p2) \<or> (p1 \<and> p3)) \<or> p1" by smt
    23 lemma "P = P = P = P = P = P = P = P = P = P" by smt2
    23 lemma "P = P = P = P = P = P = P = P = P = P" by smt
    24 
    24 
    25 lemma
    25 lemma
    26   assumes "a \<or> b \<or> c \<or> d"
    26   assumes "a \<or> b \<or> c \<or> d"
    27       and "e \<or> f \<or> (a \<and> d)"
    27       and "e \<or> f \<or> (a \<and> d)"
    28       and "\<not> (a \<or> (c \<and> ~c)) \<or> b"
    28       and "\<not> (a \<or> (c \<and> ~c)) \<or> b"
    29       and "\<not> (b \<and> (x \<or> \<not> x)) \<or> c"
    29       and "\<not> (b \<and> (x \<or> \<not> x)) \<or> c"
    30       and "\<not> (d \<or> False) \<or> c"
    30       and "\<not> (d \<or> False) \<or> c"
    31       and "\<not> (c \<or> (\<not> p \<and> (p \<or> (q \<and> \<not> q))))"
    31       and "\<not> (c \<or> (\<not> p \<and> (p \<or> (q \<and> \<not> q))))"
    32   shows False
    32   shows False
    33   using assms by smt2
    33   using assms by smt
    34 
    34 
    35 axiomatization symm_f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
    35 axiomatization symm_f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
    36   symm_f: "symm_f x y = symm_f y x"
    36   symm_f: "symm_f x y = symm_f y x"
    37 
    37 
    38 lemma "a = a \<and> symm_f a b = symm_f b a" by (smt2 symm_f)
    38 lemma "a = a \<and> symm_f a b = symm_f b a" by (smt symm_f)
    39 
    39 
    40 (*
    40 (*
    41 Taken from ~~/src/HOL/ex/SAT_Examples.thy.
    41 Taken from ~~/src/HOL/ex/SAT_Examples.thy.
    42 Translated from TPTP problem library: PUZ015-2.006.dimacs
    42 Translated from TPTP problem library: PUZ015-2.006.dimacs
    43 *)
    43 *)
   225   and "~x27 \<or> ~x57"
   225   and "~x27 \<or> ~x57"
   226   and "~x29 \<or> ~x28"
   226   and "~x29 \<or> ~x28"
   227   and "~x29 \<or> ~x58"
   227   and "~x29 \<or> ~x58"
   228   and "~x28 \<or> ~x58"
   228   and "~x28 \<or> ~x58"
   229   shows False
   229   shows False
   230   using assms by smt2
   230   using assms by smt
   231 
   231 
   232 lemma "\<forall>x::int. P x \<longrightarrow> (\<forall>y::int. P x \<or> P y)"
   232 lemma "\<forall>x::int. P x \<longrightarrow> (\<forall>y::int. P x \<or> P y)"
   233   by smt2
   233   by smt
   234 
   234 
   235 lemma
   235 lemma
   236   assumes "(\<forall>x y. P x y = x)"
   236   assumes "(\<forall>x y. P x y = x)"
   237   shows "(\<exists>y. P x y) = P x c"
   237   shows "(\<exists>y. P x y) = P x c"
   238   using assms by smt2
   238   using assms by smt
   239 
   239 
   240 lemma
   240 lemma
   241   assumes "(\<forall>x y. P x y = x)"
   241   assumes "(\<forall>x y. P x y = x)"
   242   and "(\<forall>x. \<exists>y. P x y) = (\<forall>x. P x c)"
   242   and "(\<forall>x. \<exists>y. P x y) = (\<forall>x. P x c)"
   243   shows "(EX y. P x y) = P x c"
   243   shows "(EX y. P x y) = P x c"
   244   using assms by smt2
   244   using assms by smt
   245 
   245 
   246 lemma
   246 lemma
   247   assumes "if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)"
   247   assumes "if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)"
   248   shows "P x \<longrightarrow> P y"
   248   shows "P x \<longrightarrow> P y"
   249   using assms by smt2
   249   using assms by smt
   250 
   250 
   251 
   251 
   252 section {* Arithmetic *}
   252 section {* Arithmetic *}
   253 
   253 
   254 subsection {* Linear arithmetic over integers and reals *}
   254 subsection {* Linear arithmetic over integers and reals *}
   255 
   255 
   256 lemma "(3::int) = 3" by smt2
   256 lemma "(3::int) = 3" by smt
   257 lemma "(3::real) = 3" by smt2
   257 lemma "(3::real) = 3" by smt
   258 lemma "(3 :: int) + 1 = 4" by smt2
   258 lemma "(3 :: int) + 1 = 4" by smt
   259 lemma "x + (y + z) = y + (z + (x::int))" by smt2
   259 lemma "x + (y + z) = y + (z + (x::int))" by smt
   260 lemma "max (3::int) 8 > 5" by smt2
   260 lemma "max (3::int) 8 > 5" by smt
   261 lemma "abs (x :: real) + abs y \<ge> abs (x + y)" by smt2
   261 lemma "abs (x :: real) + abs y \<ge> abs (x + y)" by smt
   262 lemma "P ((2::int) < 3) = P True" by smt2
   262 lemma "P ((2::int) < 3) = P True" by smt
   263 lemma "x + 3 \<ge> 4 \<or> x < (1::int)" by smt2
   263 lemma "x + 3 \<ge> 4 \<or> x < (1::int)" by smt
   264 
   264 
   265 lemma
   265 lemma
   266   assumes "x \<ge> (3::int)" and "y = x + 4"
   266   assumes "x \<ge> (3::int)" and "y = x + 4"
   267   shows "y - x > 0"
   267   shows "y - x > 0"
   268   using assms by smt2
   268   using assms by smt
   269 
   269 
   270 lemma "let x = (2 :: int) in x + x \<noteq> 5" by smt2
   270 lemma "let x = (2 :: int) in x + x \<noteq> 5" by smt
   271 
   271 
   272 lemma
   272 lemma
   273   fixes x :: real
   273   fixes x :: real
   274   assumes "3 * x + 7 * a < 4" and "3 < 2 * x"
   274   assumes "3 * x + 7 * a < 4" and "3 < 2 * x"
   275   shows "a < 0"
   275   shows "a < 0"
   276   using assms by smt2
   276   using assms by smt
   277 
   277 
   278 lemma "(0 \<le> y + -1 * x \<or> \<not> 0 \<le> x \<or> 0 \<le> (x::int)) = (\<not> False)" by smt2
   278 lemma "(0 \<le> y + -1 * x \<or> \<not> 0 \<le> x \<or> 0 \<le> (x::int)) = (\<not> False)" by smt
   279 
   279 
   280 lemma "
   280 lemma "
   281   (n < m \<and> m < n') \<or> (n < m \<and> m = n') \<or> (n < n' \<and> n' < m) \<or>
   281   (n < m \<and> m < n') \<or> (n < m \<and> m = n') \<or> (n < n' \<and> n' < m) \<or>
   282   (n = n' \<and> n' < m) \<or> (n = m \<and> m < n') \<or>
   282   (n = n' \<and> n' < m) \<or> (n = m \<and> m < n') \<or>
   283   (n' < m \<and> m < n) \<or> (n' < m \<and> m = n) \<or>
   283   (n' < m \<and> m < n) \<or> (n' < m \<and> m = n) \<or>
   284   (n' < n \<and> n < m) \<or> (n' = n \<and> n < m) \<or> (n' = m \<and> m < n) \<or>
   284   (n' < n \<and> n < m) \<or> (n' = n \<and> n < m) \<or> (n' = m \<and> m < n) \<or>
   285   (m < n \<and> n < n') \<or> (m < n \<and> n' = n) \<or> (m < n' \<and> n' < n) \<or>
   285   (m < n \<and> n < n') \<or> (m < n \<and> n' = n) \<or> (m < n' \<and> n' < n) \<or>
   286   (m = n \<and> n < n') \<or> (m = n' \<and> n' < n) \<or>
   286   (m = n \<and> n < n') \<or> (m = n' \<and> n' < n) \<or>
   287   (n' = m \<and> m = (n::int))"
   287   (n' = m \<and> m = (n::int))"
   288   by smt2
   288   by smt
   289 
   289 
   290 text{*
   290 text{*
   291 The following example was taken from HOL/ex/PresburgerEx.thy, where it says:
   291 The following example was taken from HOL/ex/PresburgerEx.thy, where it says:
   292 
   292 
   293   This following theorem proves that all solutions to the
   293   This following theorem proves that all solutions to the
   305 
   305 
   306 lemma "\<lbrakk> x3 = abs x2 - x1; x4 = abs x3 - x2; x5 = abs x4 - x3;
   306 lemma "\<lbrakk> x3 = abs x2 - x1; x4 = abs x3 - x2; x5 = abs x4 - x3;
   307          x6 = abs x5 - x4; x7 = abs x6 - x5; x8 = abs x7 - x6;
   307          x6 = abs x5 - x4; x7 = abs x6 - x5; x8 = abs x7 - x6;
   308          x9 = abs x8 - x7; x10 = abs x9 - x8; x11 = abs x10 - x9 \<rbrakk>
   308          x9 = abs x8 - x7; x10 = abs x9 - x8; x11 = abs x10 - x9 \<rbrakk>
   309  \<Longrightarrow> x1 = x10 \<and> x2 = (x11::int)"
   309  \<Longrightarrow> x1 = x10 \<and> x2 = (x11::int)"
   310   by smt2
   310   by smt
   311 
   311 
   312 
   312 
   313 lemma "let P = 2 * x + 1 > x + (x::real) in P \<or> False \<or> P" by smt2
   313 lemma "let P = 2 * x + 1 > x + (x::real) in P \<or> False \<or> P" by smt
   314 
   314 
   315 lemma "x + (let y = x mod 2 in 2 * y + 1) \<ge> x + (1::int)"
   315 lemma "x + (let y = x mod 2 in 2 * y + 1) \<ge> x + (1::int)"
   316   using [[z3_new_extensions]] by smt2
   316   using [[z3_extensions]] by smt
   317 
   317 
   318 lemma "x + (let y = x mod 2 in y + y) < x + (3::int)"
   318 lemma "x + (let y = x mod 2 in y + y) < x + (3::int)"
   319   using [[z3_new_extensions]] by smt2
   319   using [[z3_extensions]] by smt
   320 
   320 
   321 lemma
   321 lemma
   322   assumes "x \<noteq> (0::real)"
   322   assumes "x \<noteq> (0::real)"
   323   shows "x + x \<noteq> (let P = (abs x > 1) in if P \<or> \<not> P then 4 else 2) * x"
   323   shows "x + x \<noteq> (let P = (abs x > 1) in if P \<or> \<not> P then 4 else 2) * x"
   324   using assms [[z3_new_extensions]] by smt2
   324   using assms [[z3_extensions]] by smt
   325 
   325 
   326 lemma
   326 lemma
   327   assumes "(n + m) mod 2 = 0" and "n mod 4 = 3"
   327   assumes "(n + m) mod 2 = 0" and "n mod 4 = 3"
   328   shows "n mod 2 = 1 \<and> m mod 2 = (1::int)"
   328   shows "n mod 2 = 1 \<and> m mod 2 = (1::int)"
   329   using assms [[z3_new_extensions]] by smt2
   329   using assms [[z3_extensions]] by smt
   330 
   330 
   331 
   331 
   332 subsection {* Linear arithmetic with quantifiers *}
   332 subsection {* Linear arithmetic with quantifiers *}
   333 
   333 
   334 lemma "~ (\<exists>x::int. False)" by smt2
   334 lemma "~ (\<exists>x::int. False)" by smt
   335 lemma "~ (\<exists>x::real. False)" by smt2
   335 lemma "~ (\<exists>x::real. False)" by smt
   336 
   336 
   337 lemma "\<exists>x::int. 0 < x" by smt2
   337 lemma "\<exists>x::int. 0 < x" by smt
   338 
   338 
   339 lemma "\<exists>x::real. 0 < x"
   339 lemma "\<exists>x::real. 0 < x"
   340   using [[smt2_oracle=true]] (* no Z3 proof *)
   340   using [[smt_oracle=true]] (* no Z3 proof *)
   341   by smt2
   341   by smt
   342 
   342 
   343 lemma "\<forall>x::int. \<exists>y. y > x" by smt2
   343 lemma "\<forall>x::int. \<exists>y. y > x" by smt
   344 
   344 
   345 lemma "\<forall>x y::int. (x = 0 \<and> y = 1) \<longrightarrow> x \<noteq> y" by smt2
   345 lemma "\<forall>x y::int. (x = 0 \<and> y = 1) \<longrightarrow> x \<noteq> y" by smt
   346 lemma "\<exists>x::int. \<forall>y. x < y \<longrightarrow> y < 0 \<or> y >= 0" by smt2
   346 lemma "\<exists>x::int. \<forall>y. x < y \<longrightarrow> y < 0 \<or> y >= 0" by smt
   347 lemma "\<forall>x y::int. x < y \<longrightarrow> (2 * x + 1) < (2 * y)" by smt2
   347 lemma "\<forall>x y::int. x < y \<longrightarrow> (2 * x + 1) < (2 * y)" by smt
   348 lemma "\<forall>x y::int. (2 * x + 1) \<noteq> (2 * y)" by smt2
   348 lemma "\<forall>x y::int. (2 * x + 1) \<noteq> (2 * y)" by smt
   349 lemma "\<forall>x y::int. x + y > 2 \<or> x + y = 2 \<or> x + y < 2" by smt2
   349 lemma "\<forall>x y::int. x + y > 2 \<or> x + y = 2 \<or> x + y < 2" by smt
   350 lemma "\<forall>x::int. if x > 0 then x + 1 > 0 else 1 > x" by smt2
   350 lemma "\<forall>x::int. if x > 0 then x + 1 > 0 else 1 > x" by smt
   351 lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True" by smt2
   351 lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True" by smt
   352 lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt2
   352 lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt
   353 lemma "~ (\<exists>x y z::int. 4 * x + -6 * y = (1::int))" by smt2
   353 lemma "~ (\<exists>x y z::int. 4 * x + -6 * y = (1::int))" by smt
   354 lemma "\<exists>x::int. \<forall>x y. 0 < x \<and> 0 < y \<longrightarrow> (0::int) < x + y" by smt2
   354 lemma "\<exists>x::int. \<forall>x y. 0 < x \<and> 0 < y \<longrightarrow> (0::int) < x + y" by smt
   355 lemma "\<exists>u::int. \<forall>(x::int) y::real. 0 < x \<and> 0 < y \<longrightarrow> -1 < x" by smt2
   355 lemma "\<exists>u::int. \<forall>(x::int) y::real. 0 < x \<and> 0 < y \<longrightarrow> -1 < x" by smt
   356 lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt2
   356 lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt
   357 lemma "\<forall>x::int.
   357 lemma "\<forall>x::int.
   358   SMT2.trigger (SMT2.Symb_Cons (SMT2.Symb_Cons (SMT2.pat x) SMT2.Symb_Nil) SMT2.Symb_Nil)
   358   SMT.trigger (SMT.Symb_Cons (SMT.Symb_Cons (SMT.pat x) SMT.Symb_Nil) SMT.Symb_Nil)
   359     (x < a \<longrightarrow> 2 * x < 2 * a)" by smt2
   359     (x < a \<longrightarrow> 2 * x < 2 * a)" by smt
   360 lemma "\<forall>(a::int) b::int. 0 < b \<or> b < 1" by smt2
   360 lemma "\<forall>(a::int) b::int. 0 < b \<or> b < 1" by smt
   361 
   361 
   362 
   362 
   363 subsection {* Non-linear arithmetic over integers and reals *}
   363 subsection {* Non-linear arithmetic over integers and reals *}
   364 
   364 
   365 lemma "a > (0::int) \<Longrightarrow> a*b > 0 \<Longrightarrow> b > 0"
   365 lemma "a > (0::int) \<Longrightarrow> a*b > 0 \<Longrightarrow> b > 0"
   366   using [[smt2_oracle, z3_new_extensions]]
   366   using [[smt_oracle, z3_extensions]]
   367   by smt2
   367   by smt
   368 
   368 
   369 lemma  "(a::int) * (x + 1 + y) = a * x + a * (y + 1)"
   369 lemma  "(a::int) * (x + 1 + y) = a * x + a * (y + 1)"
   370   using [[z3_new_extensions]]
   370   using [[z3_extensions]]
   371   by smt2
   371   by smt
   372 
   372 
   373 lemma "((x::real) * (1 + y) - x * (1 - y)) = (2 * x * y)"
   373 lemma "((x::real) * (1 + y) - x * (1 - y)) = (2 * x * y)"
   374   using [[z3_new_extensions]]
   374   using [[z3_extensions]]
   375   by smt2
   375   by smt
   376 
   376 
   377 lemma
   377 lemma
   378   "(U::int) + (1 + p) * (b + e) + p * d =
   378   "(U::int) + (1 + p) * (b + e) + p * d =
   379    U + (2 * (1 + p) * (b + e) + (1 + p) * d + d * p) - (1 + p) * (b + d + e)"
   379    U + (2 * (1 + p) * (b + e) + (1 + p) * d + d * p) - (1 + p) * (b + d + e)"
   380   using [[z3_new_extensions]] by smt2
   380   using [[z3_extensions]] by smt
   381 
   381 
   382 lemma [z3_new_rule]:
   382 lemma [z3_rule]:
   383   fixes x :: "int"
   383   fixes x :: "int"
   384   assumes "x * y \<le> 0" and "\<not> y \<le> 0" and "\<not> x \<le> 0"
   384   assumes "x * y \<le> 0" and "\<not> y \<le> 0" and "\<not> x \<le> 0"
   385   shows False
   385   shows False
   386   using assms by (metis mult_le_0_iff)
   386   using assms by (metis mult_le_0_iff)
   387 
   387 
   388 
   388 
   389 section {* Pairs *}
   389 section {* Pairs *}
   390 
   390 
   391 lemma "fst (x, y) = a \<Longrightarrow> x = a"
   391 lemma "fst (x, y) = a \<Longrightarrow> x = a"
   392   using fst_conv by smt2
   392   using fst_conv by smt
   393 
   393 
   394 lemma "p1 = (x, y) \<and> p2 = (y, x) \<Longrightarrow> fst p1 = snd p2"
   394 lemma "p1 = (x, y) \<and> p2 = (y, x) \<Longrightarrow> fst p1 = snd p2"
   395   using fst_conv snd_conv by smt2
   395   using fst_conv snd_conv by smt
   396 
   396 
   397 
   397 
   398 section {* Higher-order problems and recursion *}
   398 section {* Higher-order problems and recursion *}
   399 
   399 
   400 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> (f (i1 := v1, i2 := v2)) i = f i"
   400 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> (f (i1 := v1, i2 := v2)) i = f i"
   401   using fun_upd_same fun_upd_apply by smt2
   401   using fun_upd_same fun_upd_apply by smt
   402 
   402 
   403 lemma "(f g (x::'a::type) = (g x \<and> True)) \<or> (f g x = True) \<or> (g x = True)"
   403 lemma "(f g (x::'a::type) = (g x \<and> True)) \<or> (f g x = True) \<or> (g x = True)"
   404   by smt2
   404   by smt
   405 
   405 
   406 lemma "id x = x \<and> id True = True"
   406 lemma "id x = x \<and> id True = True"
   407   by (smt2 id_def)
   407   by (smt id_def)
   408 
   408 
   409 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> ((f (i1 := v1)) (i2 := v2)) i = f i"
   409 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> ((f (i1 := v1)) (i2 := v2)) i = f i"
   410   using fun_upd_same fun_upd_apply by smt2
   410   using fun_upd_same fun_upd_apply by smt
   411 
   411 
   412 lemma
   412 lemma
   413   "f (\<exists>x. g x) \<Longrightarrow> True"
   413   "f (\<exists>x. g x) \<Longrightarrow> True"
   414   "f (\<forall>x. g x) \<Longrightarrow> True"
   414   "f (\<forall>x. g x) \<Longrightarrow> True"
   415   by smt2+
   415   by smt+
   416 
   416 
   417 lemma True using let_rsp by smt2
   417 lemma True using let_rsp by smt
   418 lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt2
   418 lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt
   419 lemma "map (\<lambda>i::int. i + 1) [0, 1] = [1, 2]" by (smt2 list.map)
   419 lemma "map (\<lambda>i::int. i + 1) [0, 1] = [1, 2]" by (smt list.map)
   420 lemma "(ALL x. P x) \<or> ~ All P" by smt2
   420 lemma "(ALL x. P x) \<or> ~ All P" by smt
   421 
   421 
   422 fun dec_10 :: "int \<Rightarrow> int" where
   422 fun dec_10 :: "int \<Rightarrow> int" where
   423   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
   423   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
   424 
   424 
   425 lemma "dec_10 (4 * dec_10 4) = 6" by (smt2 dec_10.simps)
   425 lemma "dec_10 (4 * dec_10 4) = 6" by (smt dec_10.simps)
   426 
   426 
   427 axiomatization
   427 axiomatization
   428   eval_dioph :: "int list \<Rightarrow> int list \<Rightarrow> int"
   428   eval_dioph :: "int list \<Rightarrow> int list \<Rightarrow> int"
   429 where
   429 where
   430   eval_dioph_mod: "eval_dioph ks xs mod n = eval_dioph ks (map (\<lambda>x. x mod n) xs) mod n"
   430   eval_dioph_mod: "eval_dioph ks xs mod n = eval_dioph ks (map (\<lambda>x. x mod n) xs) mod n"
   435 
   435 
   436 lemma
   436 lemma
   437   "(eval_dioph ks xs = l) =
   437   "(eval_dioph ks xs = l) =
   438    (eval_dioph ks (map (\<lambda>x. x mod 2) xs) mod 2 = l mod 2 \<and>
   438    (eval_dioph ks (map (\<lambda>x. x mod 2) xs) mod 2 = l mod 2 \<and>
   439     eval_dioph ks (map (\<lambda>x. x div 2) xs) = (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
   439     eval_dioph ks (map (\<lambda>x. x div 2) xs) = (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
   440   using [[smt2_oracle = true]] (*FIXME*)
   440   using [[smt_oracle = true]] (*FIXME*)
   441   using [[z3_new_extensions]]
   441   using [[z3_extensions]]
   442   by (smt2 eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
   442   by (smt eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
   443 
   443 
   444 
   444 
   445 context complete_lattice
   445 context complete_lattice
   446 begin
   446 begin
   447 
   447 
   448 lemma
   448 lemma
   449   assumes "Sup {a | i::bool. True} \<le> Sup {b | i::bool. True}"
   449   assumes "Sup {a | i::bool. True} \<le> Sup {b | i::bool. True}"
   450   and "Sup {b | i::bool. True} \<le> Sup {a | i::bool. True}"
   450   and "Sup {b | i::bool. True} \<le> Sup {a | i::bool. True}"
   451   shows "Sup {a | i::bool. True} \<le> Sup {a | i::bool. True}"
   451   shows "Sup {a | i::bool. True} \<le> Sup {a | i::bool. True}"
   452   using assms by (smt2 order_trans)
   452   using assms by (smt order_trans)
   453 
   453 
   454 end
   454 end
   455 
   455 
   456 
   456 
   457 section {* Monomorphization examples *}
   457 section {* Monomorphization examples *}
   458 
   458 
   459 definition Pred :: "'a \<Rightarrow> bool" where "Pred x = True"
   459 definition Pred :: "'a \<Rightarrow> bool" where "Pred x = True"
   460 
   460 
   461 lemma poly_Pred: "Pred x \<and> (Pred [x] \<or> \<not> Pred [x])" by (simp add: Pred_def)
   461 lemma poly_Pred: "Pred x \<and> (Pred [x] \<or> \<not> Pred [x])" by (simp add: Pred_def)
   462 
   462 
   463 lemma "Pred (1::int)" by (smt2 poly_Pred)
   463 lemma "Pred (1::int)" by (smt poly_Pred)
   464 
   464 
   465 axiomatization g :: "'a \<Rightarrow> nat"
   465 axiomatization g :: "'a \<Rightarrow> nat"
   466 axiomatization where
   466 axiomatization where
   467   g1: "g (Some x) = g [x]" and
   467   g1: "g (Some x) = g [x]" and
   468   g2: "g None = g []" and
   468   g2: "g None = g []" and
   469   g3: "g xs = length xs"
   469   g3: "g xs = length xs"
   470 
   470 
   471 lemma "g (Some (3::int)) = g (Some True)" by (smt2 g1 g2 g3 list.size)
   471 lemma "g (Some (3::int)) = g (Some True)" by (smt g1 g2 g3 list.size)
   472 
   472 
   473 end
   473 end