src/HOL/Library/Cardinality.thy
changeset 48176 3d9c1ddb9f47
parent 48165 d07a0b9601aa
child 49689 b8a710806de9
equal deleted inserted replaced
48175:fea68365c975 48176:3d9c1ddb9f47
    28   by (simp add: univ card_image inj_on_def Abs_inject)
    28   by (simp add: univ card_image inj_on_def Abs_inject)
    29 
    29 
    30 lemma finite_range_Some: "finite (range (Some :: 'a \<Rightarrow> 'a option)) = finite (UNIV :: 'a set)"
    30 lemma finite_range_Some: "finite (range (Some :: 'a \<Rightarrow> 'a option)) = finite (UNIV :: 'a set)"
    31 by(auto dest: finite_imageD intro: inj_Some)
    31 by(auto dest: finite_imageD intro: inj_Some)
    32 
    32 
       
    33 lemma infinite_literal: "\<not> finite (UNIV :: String.literal set)"
       
    34 proof -
       
    35   have "inj STR" by(auto intro: injI)
       
    36   thus ?thesis
       
    37     by(auto simp add: type_definition.univ[OF type_definition_literal] infinite_UNIV_listI dest: finite_imageD)
       
    38 qed
    33 
    39 
    34 subsection {* Cardinalities of types *}
    40 subsection {* Cardinalities of types *}
    35 
    41 
    36 syntax "_type_card" :: "type => nat" ("(1CARD/(1'(_')))")
    42 syntax "_type_card" :: "type => nat" ("(1CARD/(1'(_')))")
    37 
    43 
   129     have "CARD('a \<Rightarrow> 'b) = 1" unfolding eq by simp }
   135     have "CARD('a \<Rightarrow> 'b) = 1" unfolding eq by simp }
   130   ultimately show ?thesis
   136   ultimately show ?thesis
   131     by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
   137     by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
   132 qed
   138 qed
   133 
   139 
       
   140 corollary finite_UNIV_fun:
       
   141   "finite (UNIV :: ('a \<Rightarrow> 'b) set) \<longleftrightarrow>
       
   142    finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set) \<or> CARD('b) = 1"
       
   143   (is "?lhs \<longleftrightarrow> ?rhs")
       
   144 proof -
       
   145   have "?lhs \<longleftrightarrow> CARD('a \<Rightarrow> 'b) > 0" by(simp add: card_gt_0_iff)
       
   146   also have "\<dots> \<longleftrightarrow> CARD('a) > 0 \<and> CARD('b) > 0 \<or> CARD('b) = 1"
       
   147     by(simp add: card_fun)
       
   148   also have "\<dots> = ?rhs" by(simp add: card_gt_0_iff)
       
   149   finally show ?thesis .
       
   150 qed
       
   151 
   134 lemma card_nibble: "CARD(nibble) = 16"
   152 lemma card_nibble: "CARD(nibble) = 16"
   135 unfolding UNIV_nibble by simp
   153 unfolding UNIV_nibble by simp
   136 
   154 
   137 lemma card_UNIV_char: "CARD(char) = 256"
   155 lemma card_UNIV_char: "CARD(char) = 256"
   138 proof -
   156 proof -
   139   have "inj (\<lambda>(x, y). Char x y)" by(auto intro: injI)
   157   have "inj (\<lambda>(x, y). Char x y)" by(auto intro: injI)
   140   thus ?thesis unfolding UNIV_char by(simp add: card_image card_nibble)
   158   thus ?thesis unfolding UNIV_char by(simp add: card_image card_nibble)
   141 qed
   159 qed
   142 
   160 
   143 lemma card_literal: "CARD(String.literal) = 0"
   161 lemma card_literal: "CARD(String.literal) = 0"
   144 proof -
   162 by(simp add: card_eq_0_iff infinite_literal)
   145   have "inj STR" by(auto intro: injI)
       
   146   thus ?thesis by(simp add: type_definition.univ[OF type_definition_literal] card_image infinite_UNIV_listI)
       
   147 qed
       
   148 
   163 
   149 subsection {* Classes with at least 1 and 2  *}
   164 subsection {* Classes with at least 1 and 2  *}
   150 
   165 
   151 text {* Class finite already captures "at least 1" *}
   166 text {* Class finite already captures "at least 1" *}
   152 
   167 
   164 lemma one_less_card: "Suc 0 < CARD('a::card2)"
   179 lemma one_less_card: "Suc 0 < CARD('a::card2)"
   165   using two_le_card [where 'a='a] by simp
   180   using two_le_card [where 'a='a] by simp
   166 
   181 
   167 lemma one_less_int_card: "1 < int CARD('a::card2)"
   182 lemma one_less_int_card: "1 < int CARD('a::card2)"
   168   using one_less_card [where 'a='a] by simp
   183   using one_less_card [where 'a='a] by simp
       
   184 
       
   185 
       
   186 subsection {* A type class for deciding finiteness of types *}
       
   187 
       
   188 type_synonym 'a finite_UNIV = "('a, bool) phantom"
       
   189 
       
   190 class finite_UNIV = 
       
   191   fixes finite_UNIV :: "('a, bool) phantom"
       
   192   assumes finite_UNIV: "finite_UNIV = Phantom('a) (finite (UNIV :: 'a set))"
       
   193 
       
   194 lemma finite_UNIV_code [code_unfold]:
       
   195   "finite (UNIV :: 'a :: finite_UNIV set)
       
   196   \<longleftrightarrow> of_phantom (finite_UNIV :: 'a finite_UNIV)"
       
   197 by(simp add: finite_UNIV)
   169 
   198 
   170 subsection {* A type class for computing the cardinality of types *}
   199 subsection {* A type class for computing the cardinality of types *}
   171 
   200 
   172 definition is_list_UNIV :: "'a list \<Rightarrow> bool"
   201 definition is_list_UNIV :: "'a list \<Rightarrow> bool"
   173 where [code del]: "is_list_UNIV xs = (let c = CARD('a) in if c = 0 then False else size (remdups xs) = c)"
   202 where [code del]: "is_list_UNIV xs = (let c = CARD('a) in if c = 0 then False else size (remdups xs) = c)"
   176 by(auto simp add: is_list_UNIV_def Let_def card_eq_0_iff List.card_set[symmetric] 
   205 by(auto simp add: is_list_UNIV_def Let_def card_eq_0_iff List.card_set[symmetric] 
   177    dest: subst[where P="finite", OF _ finite_set] card_eq_UNIV_imp_eq_UNIV)
   206    dest: subst[where P="finite", OF _ finite_set] card_eq_UNIV_imp_eq_UNIV)
   178 
   207 
   179 type_synonym 'a card_UNIV = "('a, nat) phantom"
   208 type_synonym 'a card_UNIV = "('a, nat) phantom"
   180 
   209 
   181 class card_UNIV = 
   210 class card_UNIV = finite_UNIV +
   182   fixes card_UNIV :: "'a card_UNIV"
   211   fixes card_UNIV :: "'a card_UNIV"
   183   assumes card_UNIV: "card_UNIV = Phantom('a) CARD('a)"
   212   assumes card_UNIV: "card_UNIV = Phantom('a) CARD('a)"
   184 
   213 
   185 lemma card_UNIV_code [code_unfold]: 
   214 lemma card_UNIV_code [code_unfold]: 
   186   "CARD('a :: card_UNIV) = of_phantom (card_UNIV :: 'a card_UNIV)"
   215   "CARD('a :: card_UNIV) = of_phantom (card_UNIV :: 'a card_UNIV)"
   189 lemma is_list_UNIV_code [code]:
   218 lemma is_list_UNIV_code [code]:
   190   "is_list_UNIV (xs :: 'a list) = 
   219   "is_list_UNIV (xs :: 'a list) = 
   191   (let c = CARD('a :: card_UNIV) in if c = 0 then False else size (remdups xs) = c)"
   220   (let c = CARD('a :: card_UNIV) in if c = 0 then False else size (remdups xs) = c)"
   192 by(rule is_list_UNIV_def)
   221 by(rule is_list_UNIV_def)
   193 
   222 
   194 lemma finite_UNIV_conv_card_UNIV [code_unfold]:
       
   195   "finite (UNIV :: 'a :: card_UNIV set) \<longleftrightarrow> 
       
   196   of_phantom (card_UNIV :: 'a card_UNIV) > 0"
       
   197 by(simp add: card_UNIV card_gt_0_iff)
       
   198 
       
   199 subsection {* Instantiations for @{text "card_UNIV"} *}
   223 subsection {* Instantiations for @{text "card_UNIV"} *}
   200 
   224 
   201 instantiation nat :: card_UNIV begin
   225 instantiation nat :: card_UNIV begin
       
   226 definition "finite_UNIV = Phantom(nat) False"
   202 definition "card_UNIV = Phantom(nat) 0"
   227 definition "card_UNIV = Phantom(nat) 0"
   203 instance by intro_classes (simp add: card_UNIV_nat_def)
   228 instance by intro_classes (simp_all add: finite_UNIV_nat_def card_UNIV_nat_def)
   204 end
   229 end
   205 
   230 
   206 instantiation int :: card_UNIV begin
   231 instantiation int :: card_UNIV begin
       
   232 definition "finite_UNIV = Phantom(int) False"
   207 definition "card_UNIV = Phantom(int) 0"
   233 definition "card_UNIV = Phantom(int) 0"
   208 instance by intro_classes (simp add: card_UNIV_int_def infinite_UNIV_int)
   234 instance by intro_classes (simp_all add: card_UNIV_int_def finite_UNIV_int_def infinite_UNIV_int)
   209 end
   235 end
   210 
   236 
   211 instantiation code_numeral :: card_UNIV begin
   237 instantiation code_numeral :: card_UNIV begin
       
   238 definition "finite_UNIV = Phantom(code_numeral) False"
   212 definition "card_UNIV = Phantom(code_numeral) 0"
   239 definition "card_UNIV = Phantom(code_numeral) 0"
   213 instance 
   240 instance
   214   by(intro_classes)(auto simp add: card_UNIV_code_numeral_def type_definition.univ[OF type_definition_code_numeral] card_eq_0_iff dest!: finite_imageD intro: inj_onI)
   241   by(intro_classes)(auto simp add: card_UNIV_code_numeral_def finite_UNIV_code_numeral_def type_definition.univ[OF type_definition_code_numeral] card_eq_0_iff dest!: finite_imageD intro: inj_onI)
   215 end
   242 end
   216 
   243 
   217 instantiation list :: (type) card_UNIV begin
   244 instantiation list :: (type) card_UNIV begin
       
   245 definition "finite_UNIV = Phantom('a list) False"
   218 definition "card_UNIV = Phantom('a list) 0"
   246 definition "card_UNIV = Phantom('a list) 0"
   219 instance by intro_classes (simp add: card_UNIV_list_def infinite_UNIV_listI)
   247 instance by intro_classes (simp_all add: card_UNIV_list_def finite_UNIV_list_def infinite_UNIV_listI)
   220 end
   248 end
   221 
   249 
   222 instantiation unit :: card_UNIV begin
   250 instantiation unit :: card_UNIV begin
       
   251 definition "finite_UNIV = Phantom(unit) True"
   223 definition "card_UNIV = Phantom(unit) 1"
   252 definition "card_UNIV = Phantom(unit) 1"
   224 instance by intro_classes (simp add: card_UNIV_unit_def card_UNIV_unit)
   253 instance by intro_classes (simp_all add: card_UNIV_unit_def finite_UNIV_unit_def)
   225 end
   254 end
   226 
   255 
   227 instantiation bool :: card_UNIV begin
   256 instantiation bool :: card_UNIV begin
       
   257 definition "finite_UNIV = Phantom(bool) True"
   228 definition "card_UNIV = Phantom(bool) 2"
   258 definition "card_UNIV = Phantom(bool) 2"
   229 instance by(intro_classes)(simp add: card_UNIV_bool_def card_UNIV_bool)
   259 instance by(intro_classes)(simp_all add: card_UNIV_bool_def finite_UNIV_bool_def)
   230 end
   260 end
   231 
   261 
   232 instantiation nibble :: card_UNIV begin
   262 instantiation nibble :: card_UNIV begin
       
   263 definition "finite_UNIV = Phantom(nibble) True"
   233 definition "card_UNIV = Phantom(nibble) 16"
   264 definition "card_UNIV = Phantom(nibble) 16"
   234 instance by(intro_classes)(simp add: card_UNIV_nibble_def card_nibble)
   265 instance by(intro_classes)(simp_all add: card_UNIV_nibble_def card_nibble finite_UNIV_nibble_def)
   235 end
   266 end
   236 
   267 
   237 instantiation char :: card_UNIV begin
   268 instantiation char :: card_UNIV begin
       
   269 definition "finite_UNIV = Phantom(char) True"
   238 definition "card_UNIV = Phantom(char) 256"
   270 definition "card_UNIV = Phantom(char) 256"
   239 instance by intro_classes (simp add: card_UNIV_char_def card_UNIV_char)
   271 instance by intro_classes (simp_all add: card_UNIV_char_def card_UNIV_char finite_UNIV_char_def)
       
   272 end
       
   273 
       
   274 instantiation prod :: (finite_UNIV, finite_UNIV) finite_UNIV begin
       
   275 definition "finite_UNIV = Phantom('a \<times> 'b) 
       
   276   (of_phantom (finite_UNIV :: 'a finite_UNIV) \<and> of_phantom (finite_UNIV :: 'b finite_UNIV))"
       
   277 instance by intro_classes (simp add: finite_UNIV_prod_def finite_UNIV finite_prod)
   240 end
   278 end
   241 
   279 
   242 instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
   280 instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
   243 definition "card_UNIV = 
   281 definition "card_UNIV = Phantom('a \<times> 'b) 
   244   Phantom('a \<times> 'b) (of_phantom (card_UNIV :: 'a card_UNIV) * of_phantom (card_UNIV :: 'b card_UNIV))"
   282   (of_phantom (card_UNIV :: 'a card_UNIV) * of_phantom (card_UNIV :: 'b card_UNIV))"
   245 instance by intro_classes (simp add: card_UNIV_prod_def card_UNIV)
   283 instance by intro_classes (simp add: card_UNIV_prod_def card_UNIV)
       
   284 end
       
   285 
       
   286 instantiation sum :: (finite_UNIV, finite_UNIV) finite_UNIV begin
       
   287 definition "finite_UNIV = Phantom('a + 'b)
       
   288   (of_phantom (finite_UNIV :: 'a finite_UNIV) \<and> of_phantom (finite_UNIV :: 'b finite_UNIV))"
       
   289 instance
       
   290   by intro_classes (simp add: UNIV_Plus_UNIV[symmetric] finite_UNIV_sum_def finite_UNIV del: UNIV_Plus_UNIV)
   246 end
   291 end
   247 
   292 
   248 instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
   293 instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
   249 definition "card_UNIV = Phantom('a + 'b)
   294 definition "card_UNIV = Phantom('a + 'b)
   250   (let ca = of_phantom (card_UNIV :: 'a card_UNIV); 
   295   (let ca = of_phantom (card_UNIV :: 'a card_UNIV); 
   251        cb = of_phantom (card_UNIV :: 'b card_UNIV)
   296        cb = of_phantom (card_UNIV :: 'b card_UNIV)
   252    in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
   297    in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
   253 instance by intro_classes (auto simp add: card_UNIV_sum_def card_UNIV card_UNIV_sum)
   298 instance by intro_classes (auto simp add: card_UNIV_sum_def card_UNIV card_UNIV_sum)
   254 end
   299 end
   255 
   300 
       
   301 instantiation "fun" :: (finite_UNIV, card_UNIV) finite_UNIV begin
       
   302 definition "finite_UNIV = Phantom('a \<Rightarrow> 'b)
       
   303   (let cb = of_phantom (card_UNIV :: 'b card_UNIV)
       
   304    in cb = 1 \<or> of_phantom (finite_UNIV :: 'a finite_UNIV) \<and> cb \<noteq> 0)"
       
   305 instance
       
   306   by intro_classes (auto simp add: finite_UNIV_fun_def Let_def card_UNIV finite_UNIV finite_UNIV_fun card_gt_0_iff)
       
   307 end
       
   308 
   256 instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
   309 instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
   257 definition "card_UNIV = Phantom('a \<Rightarrow> 'b)
   310 definition "card_UNIV = Phantom('a \<Rightarrow> 'b)
   258   (let ca = of_phantom (card_UNIV :: 'a card_UNIV);
   311   (let ca = of_phantom (card_UNIV :: 'a card_UNIV);
   259        cb = of_phantom (card_UNIV :: 'b card_UNIV)
   312        cb = of_phantom (card_UNIV :: 'b card_UNIV)
   260    in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
   313    in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
   261 instance by intro_classes (simp add: card_UNIV_fun_def card_UNIV Let_def card_fun)
   314 instance by intro_classes (simp add: card_UNIV_fun_def card_UNIV Let_def card_fun)
   262 end
   315 end
   263 
   316 
       
   317 instantiation option :: (finite_UNIV) finite_UNIV begin
       
   318 definition "finite_UNIV = Phantom('a option) (of_phantom (finite_UNIV :: 'a finite_UNIV))"
       
   319 instance by intro_classes (simp add: finite_UNIV_option_def finite_UNIV)
       
   320 end
       
   321 
   264 instantiation option :: (card_UNIV) card_UNIV begin
   322 instantiation option :: (card_UNIV) card_UNIV begin
   265 definition "card_UNIV = Phantom('a option)
   323 definition "card_UNIV = Phantom('a option)
   266   (let c = of_phantom (card_UNIV :: 'a card_UNIV) in if c \<noteq> 0 then Suc c else 0)"
   324   (let c = of_phantom (card_UNIV :: 'a card_UNIV) in if c \<noteq> 0 then Suc c else 0)"
   267 instance by intro_classes (simp add: card_UNIV_option_def card_UNIV card_UNIV_option)
   325 instance by intro_classes (simp add: card_UNIV_option_def card_UNIV card_UNIV_option)
   268 end
   326 end
   269 
   327 
   270 instantiation String.literal :: card_UNIV begin
   328 instantiation String.literal :: card_UNIV begin
       
   329 definition "finite_UNIV = Phantom(String.literal) False"
   271 definition "card_UNIV = Phantom(String.literal) 0"
   330 definition "card_UNIV = Phantom(String.literal) 0"
   272 instance by intro_classes (simp add: card_UNIV_literal_def card_literal)
   331 instance
       
   332   by intro_classes (simp_all add: card_UNIV_literal_def finite_UNIV_literal_def infinite_literal card_literal)
       
   333 end
       
   334 
       
   335 instantiation set :: (finite_UNIV) finite_UNIV begin
       
   336 definition "finite_UNIV = Phantom('a set) (of_phantom (finite_UNIV :: 'a finite_UNIV))"
       
   337 instance by intro_classes (simp add: finite_UNIV_set_def finite_UNIV Finite_Set.finite_set)
   273 end
   338 end
   274 
   339 
   275 instantiation set :: (card_UNIV) card_UNIV begin
   340 instantiation set :: (card_UNIV) card_UNIV begin
   276 definition "card_UNIV = Phantom('a set)
   341 definition "card_UNIV = Phantom('a set)
   277   (let c = of_phantom (card_UNIV :: 'a card_UNIV) in if c = 0 then 0 else 2 ^ c)"
   342   (let c = of_phantom (card_UNIV :: 'a card_UNIV) in if c = 0 then 0 else 2 ^ c)"
   278 instance by intro_classes (simp add: card_UNIV_set_def card_UNIV_set card_UNIV)
   343 instance by intro_classes (simp add: card_UNIV_set_def card_UNIV_set card_UNIV)
   279 end
   344 end
   280 
   345 
   281 
       
   282 lemma UNIV_finite_1: "UNIV = set [finite_1.a\<^isub>1]"
   346 lemma UNIV_finite_1: "UNIV = set [finite_1.a\<^isub>1]"
   283 by(auto intro: finite_1.exhaust)
   347 by(auto intro: finite_1.exhaust)
   284 
   348 
   285 lemma UNIV_finite_2: "UNIV = set [finite_2.a\<^isub>1, finite_2.a\<^isub>2]"
   349 lemma UNIV_finite_2: "UNIV = set [finite_2.a\<^isub>1, finite_2.a\<^isub>2]"
   286 by(auto intro: finite_2.exhaust)
   350 by(auto intro: finite_2.exhaust)
   294 lemma UNIV_finite_5:
   358 lemma UNIV_finite_5:
   295   "UNIV = set [finite_5.a\<^isub>1, finite_5.a\<^isub>2, finite_5.a\<^isub>3, finite_5.a\<^isub>4, finite_5.a\<^isub>5]"
   359   "UNIV = set [finite_5.a\<^isub>1, finite_5.a\<^isub>2, finite_5.a\<^isub>3, finite_5.a\<^isub>4, finite_5.a\<^isub>5]"
   296 by(auto intro: finite_5.exhaust)
   360 by(auto intro: finite_5.exhaust)
   297 
   361 
   298 instantiation Enum.finite_1 :: card_UNIV begin
   362 instantiation Enum.finite_1 :: card_UNIV begin
       
   363 definition "finite_UNIV = Phantom(Enum.finite_1) True"
   299 definition "card_UNIV = Phantom(Enum.finite_1) 1"
   364 definition "card_UNIV = Phantom(Enum.finite_1) 1"
   300 instance by intro_classes (simp add: UNIV_finite_1 card_UNIV_finite_1_def)
   365 instance
       
   366   by intro_classes (simp_all add: UNIV_finite_1 card_UNIV_finite_1_def finite_UNIV_finite_1_def)
   301 end
   367 end
   302 
   368 
   303 instantiation Enum.finite_2 :: card_UNIV begin
   369 instantiation Enum.finite_2 :: card_UNIV begin
       
   370 definition "finite_UNIV = Phantom(Enum.finite_2) True"
   304 definition "card_UNIV = Phantom(Enum.finite_2) 2"
   371 definition "card_UNIV = Phantom(Enum.finite_2) 2"
   305 instance by intro_classes (simp add: UNIV_finite_2 card_UNIV_finite_2_def)
   372 instance
       
   373   by intro_classes (simp_all add: UNIV_finite_2 card_UNIV_finite_2_def finite_UNIV_finite_2_def)
   306 end
   374 end
   307 
   375 
   308 instantiation Enum.finite_3 :: card_UNIV begin
   376 instantiation Enum.finite_3 :: card_UNIV begin
       
   377 definition "finite_UNIV = Phantom(Enum.finite_3) True"
   309 definition "card_UNIV = Phantom(Enum.finite_3) 3"
   378 definition "card_UNIV = Phantom(Enum.finite_3) 3"
   310 instance by intro_classes (simp add: UNIV_finite_3 card_UNIV_finite_3_def)
   379 instance
       
   380   by intro_classes (simp_all add: UNIV_finite_3 card_UNIV_finite_3_def finite_UNIV_finite_3_def)
   311 end
   381 end
   312 
   382 
   313 instantiation Enum.finite_4 :: card_UNIV begin
   383 instantiation Enum.finite_4 :: card_UNIV begin
       
   384 definition "finite_UNIV = Phantom(Enum.finite_4) True"
   314 definition "card_UNIV = Phantom(Enum.finite_4) 4"
   385 definition "card_UNIV = Phantom(Enum.finite_4) 4"
   315 instance by intro_classes (simp add: UNIV_finite_4 card_UNIV_finite_4_def)
   386 instance
       
   387   by intro_classes (simp_all add: UNIV_finite_4 card_UNIV_finite_4_def finite_UNIV_finite_4_def)
   316 end
   388 end
   317 
   389 
   318 instantiation Enum.finite_5 :: card_UNIV begin
   390 instantiation Enum.finite_5 :: card_UNIV begin
       
   391 definition "finite_UNIV = Phantom(Enum.finite_5) True"
   319 definition "card_UNIV = Phantom(Enum.finite_5) 5"
   392 definition "card_UNIV = Phantom(Enum.finite_5) 5"
   320 instance by intro_classes (simp add: UNIV_finite_5 card_UNIV_finite_5_def)
   393 instance
       
   394   by intro_classes (simp_all add: UNIV_finite_5 card_UNIV_finite_5_def finite_UNIV_finite_5_def)
   321 end
   395 end
   322 
   396 
   323 subsection {* Code setup for sets *}
   397 subsection {* Code setup for sets *}
   324 
   398 
   325 lemma card_Compl:
   399 lemma card_Compl:
   344 definition finite' :: "'a set \<Rightarrow> bool"
   418 definition finite' :: "'a set \<Rightarrow> bool"
   345 where [simp, code del, code_abbrev]: "finite' = finite"
   419 where [simp, code del, code_abbrev]: "finite' = finite"
   346 
   420 
   347 lemma finite'_code [code]:
   421 lemma finite'_code [code]:
   348   "finite' (set xs) \<longleftrightarrow> True"
   422   "finite' (set xs) \<longleftrightarrow> True"
   349   "finite' (List.coset xs) \<longleftrightarrow> CARD('a) > 0"
   423   "finite' (List.coset xs) \<longleftrightarrow> of_phantom (finite_UNIV :: 'a finite_UNIV)"
   350 by(simp_all add: card_gt_0_iff)
   424 by(simp_all add: card_gt_0_iff finite_UNIV)
   351 
   425 
   352 definition subset' :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
   426 definition subset' :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
   353 where [simp, code del, code_abbrev]: "subset' = op \<subseteq>"
   427 where [simp, code del, code_abbrev]: "subset' = op \<subseteq>"
   354 
   428 
   355 lemma subset'_code [code]:
   429 lemma subset'_code [code]: