src/HOL/Nonstandard_Analysis/NSCA.thy
changeset 70216 40f19372a723
parent 69597 ff784d5a5bfb
child 70217 1f04832cbfcf
equal deleted inserted replaced
70215:8371a25ca177 70216:40f19372a723
    20 
    20 
    21 
    21 
    22 subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close>
    22 subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close>
    23 
    23 
    24 lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)"
    24 lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)"
    25 by (auto, drule Standard_minus, auto)
    25   using Standard_minus by fastforce
    26 
    26 
    27 lemma SComplex_add_cancel:
    27 lemma SComplex_add_cancel:
    28      "[| x + y \<in> SComplex; y \<in> SComplex |] ==> x \<in> SComplex"
    28   "\<lbrakk>x + y \<in> SComplex; y \<in> SComplex\<rbrakk> \<Longrightarrow> x \<in> SComplex"
    29 by (drule (1) Standard_diff, simp)
    29   using Standard_diff by fastforce
    30 
    30 
    31 lemma SReal_hcmod_hcomplex_of_complex [simp]:
    31 lemma SReal_hcmod_hcomplex_of_complex [simp]:
    32      "hcmod (hcomplex_of_complex r) \<in> \<real>"
    32   "hcmod (hcomplex_of_complex r) \<in> \<real>"
    33 by (simp add: Reals_eq_Standard)
    33   by (simp add: Reals_eq_Standard)
    34 
    34 
    35 lemma SReal_hcmod_numeral [simp]: "hcmod (numeral w ::hcomplex) \<in> \<real>"
    35 lemma SReal_hcmod_numeral: "hcmod (numeral w ::hcomplex) \<in> \<real>"
    36 by (simp add: Reals_eq_Standard)
    36   by simp
    37 
    37 
    38 lemma SReal_hcmod_SComplex: "x \<in> SComplex ==> hcmod x \<in> \<real>"
    38 lemma SReal_hcmod_SComplex: "x \<in> SComplex \<Longrightarrow> hcmod x \<in> \<real>"
    39 by (simp add: Reals_eq_Standard)
    39   by (simp add: Reals_eq_Standard)
    40 
    40 
    41 lemma SComplex_divide_numeral:
    41 lemma SComplex_divide_numeral:
    42      "r \<in> SComplex ==> r/(numeral w::hcomplex) \<in> SComplex"
    42   "r \<in> SComplex \<Longrightarrow> r/(numeral w::hcomplex) \<in> SComplex"
    43 by simp
    43   by simp
    44 
    44 
    45 lemma SComplex_UNIV_complex:
    45 lemma SComplex_UNIV_complex:
    46      "{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)"
    46   "{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)"
    47 by simp
    47   by simp
    48 
    48 
    49 lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)"
    49 lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)"
    50 by (simp add: Standard_def image_def)
    50   by (simp add: Standard_def image_def)
    51 
    51 
    52 lemma hcomplex_of_complex_image:
    52 lemma hcomplex_of_complex_image:
    53      "hcomplex_of_complex `(UNIV::complex set) = SComplex"
    53   "range hcomplex_of_complex = SComplex"
    54 by (simp add: Standard_def)
    54   by (simp add: Standard_def)
    55 
    55 
    56 lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
    56 lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
    57 by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f)
    57 by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f)
    58 
    58 
    59 lemma SComplex_hcomplex_of_complex_image: 
    59 lemma SComplex_hcomplex_of_complex_image: 
    60       "\<lbrakk>\<exists>x. x \<in> P; P \<le> SComplex\<rbrakk> \<Longrightarrow> \<exists>Q. P = hcomplex_of_complex ` Q"
    60       "\<lbrakk>\<exists>x. x \<in> P; P \<le> SComplex\<rbrakk> \<Longrightarrow> \<exists>Q. P = hcomplex_of_complex ` Q"
    61 apply (simp add: Standard_def, blast)
    61   by (metis Standard_def subset_imageE)
    62 done
       
    63 
    62 
    64 lemma SComplex_SReal_dense:
    63 lemma SComplex_SReal_dense:
    65      "\<lbrakk>x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y  
    64      "\<lbrakk>x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y  
    66       \<rbrakk> \<Longrightarrow> \<exists>r \<in> Reals. hcmod x< r \<and> r < hcmod y"
    65       \<rbrakk> \<Longrightarrow> \<exists>r \<in> Reals. hcmod x< r \<and> r < hcmod y"
    67 apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex)
    66   by (simp add: SReal_dense SReal_hcmod_SComplex)
    68 done
       
    69 
    67 
    70 
    68 
    71 subsection\<open>The Finite Elements form a Subring\<close>
    69 subsection\<open>The Finite Elements form a Subring\<close>
    72 
    70 
    73 lemma HFinite_hcmod_hcomplex_of_complex [simp]:
    71 lemma HFinite_hcmod_hcomplex_of_complex [simp]:
    74      "hcmod (hcomplex_of_complex r) \<in> HFinite"
    72   "hcmod (hcomplex_of_complex r) \<in> HFinite"
    75 by (auto intro!: SReal_subset_HFinite [THEN subsetD])
    73   by (auto intro!: SReal_subset_HFinite [THEN subsetD])
    76 
    74 
    77 lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)"
    75 lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)"
    78 by (simp add: HFinite_def)
    76   by (simp add: HFinite_def)
    79 
    77 
    80 lemma HFinite_bounded_hcmod:
    78 lemma HFinite_bounded_hcmod:
    81   "\<lbrakk>x \<in> HFinite; y \<le> hcmod x; 0 \<le> y\<rbrakk> \<Longrightarrow> y \<in> HFinite"
    79   "\<lbrakk>x \<in> HFinite; y \<le> hcmod x; 0 \<le> y\<rbrakk> \<Longrightarrow> y \<in> HFinite"
    82 by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff)
    80   by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff)
    83 
    81 
    84 
    82 
    85 subsection\<open>The Complex Infinitesimals form a Subring\<close>
    83 subsection\<open>The Complex Infinitesimals form a Subring\<close>
    86 
    84 
    87 lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x"
       
    88 by auto
       
    89 
       
    90 lemma Infinitesimal_hcmod_iff: 
    85 lemma Infinitesimal_hcmod_iff: 
    91    "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
    86   "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
    92 by (simp add: Infinitesimal_def)
    87   by (simp add: Infinitesimal_def)
    93 
    88 
    94 lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
    89 lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
    95 by (simp add: HInfinite_def)
    90   by (simp add: HInfinite_def)
    96 
    91 
    97 lemma HFinite_diff_Infinitesimal_hcmod:
    92 lemma HFinite_diff_Infinitesimal_hcmod:
    98      "x \<in> HFinite - Infinitesimal ==> hcmod x \<in> HFinite - Infinitesimal"
    93   "x \<in> HFinite - Infinitesimal \<Longrightarrow> hcmod x \<in> HFinite - Infinitesimal"
    99 by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff)
    94   by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff)
   100 
    95 
   101 lemma hcmod_less_Infinitesimal:
    96 lemma hcmod_less_Infinitesimal:
   102      "[| e \<in> Infinitesimal; hcmod x < hcmod e |] ==> x \<in> Infinitesimal"
    97   "\<lbrakk>e \<in> Infinitesimal; hcmod x < hcmod e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
   103 by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
    98   by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
   104 
    99 
   105 lemma hcmod_le_Infinitesimal:
   100 lemma hcmod_le_Infinitesimal:
   106      "[| e \<in> Infinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> Infinitesimal"
   101   "\<lbrakk>e \<in> Infinitesimal; hcmod x \<le> hcmod e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
   107 by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
   102   by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
   108 
       
   109 lemma Infinitesimal_interval_hcmod:
       
   110      "[| e \<in> Infinitesimal;  
       
   111           e' \<in> Infinitesimal;  
       
   112           hcmod e' < hcmod x ; hcmod x < hcmod e  
       
   113        |] ==> x \<in> Infinitesimal"
       
   114 by (auto intro: Infinitesimal_interval simp add: Infinitesimal_hcmod_iff)
       
   115 
       
   116 lemma Infinitesimal_interval2_hcmod:
       
   117      "[| e \<in> Infinitesimal;  
       
   118          e' \<in> Infinitesimal;  
       
   119          hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e  
       
   120       |] ==> x \<in> Infinitesimal"
       
   121 by (auto intro: Infinitesimal_interval2 simp add: Infinitesimal_hcmod_iff)
       
   122 
   103 
   123 
   104 
   124 subsection\<open>The ``Infinitely Close'' Relation\<close>
   105 subsection\<open>The ``Infinitely Close'' Relation\<close>
   125 
   106 
   126 (*
       
   127 Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z \<approx> hcmod w)"
       
   128 by (auto_tac (claset(),simpset() addsimps [Infinitesimal_hcmod_iff]));
       
   129 *)
       
   130 
       
   131 lemma approx_SComplex_mult_cancel_zero:
   107 lemma approx_SComplex_mult_cancel_zero:
   132      "[| a \<in> SComplex; a \<noteq> 0; a*x \<approx> 0 |] ==> x \<approx> 0"
   108   "\<lbrakk>a \<in> SComplex; a \<noteq> 0; a*x \<approx> 0\<rbrakk> \<Longrightarrow> x \<approx> 0"
   133 apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
   109   by (metis Infinitesimal_mult_disj SComplex_iff mem_infmal_iff star_of_Infinitesimal_iff_0 star_zero_def)
   134 apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
   110 
   135 done
   111 lemma approx_mult_SComplex1: "\<lbrakk>a \<in> SComplex; x \<approx> 0\<rbrakk> \<Longrightarrow> x*a \<approx> 0"
   136 
   112   using SComplex_iff approx_mult_subst_star_of by fastforce
   137 lemma approx_mult_SComplex1: "[| a \<in> SComplex; x \<approx> 0 |] ==> x*a \<approx> 0"
   113 
   138 by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult1)
   114 lemma approx_mult_SComplex2: "\<lbrakk>a \<in> SComplex; x \<approx> 0\<rbrakk> \<Longrightarrow> a*x \<approx> 0"
   139 
   115   by (metis approx_mult_SComplex1 mult.commute)
   140 lemma approx_mult_SComplex2: "[| a \<in> SComplex; x \<approx> 0 |] ==> a*x \<approx> 0"
       
   141 by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult2)
       
   142 
   116 
   143 lemma approx_mult_SComplex_zero_cancel_iff [simp]:
   117 lemma approx_mult_SComplex_zero_cancel_iff [simp]:
   144      "[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x \<approx> 0) = (x \<approx> 0)"
   118   "\<lbrakk>a \<in> SComplex; a \<noteq> 0\<rbrakk> \<Longrightarrow> (a*x \<approx> 0) = (x \<approx> 0)"
   145 by (blast intro: approx_SComplex_mult_cancel_zero approx_mult_SComplex2)
   119   using approx_SComplex_mult_cancel_zero approx_mult_SComplex2 by blast
   146 
   120 
   147 lemma approx_SComplex_mult_cancel:
   121 lemma approx_SComplex_mult_cancel:
   148      "[| a \<in> SComplex; a \<noteq> 0; a* w \<approx> a*z |] ==> w \<approx> z"
   122      "\<lbrakk>a \<in> SComplex; a \<noteq> 0; a*w \<approx> a*z\<rbrakk> \<Longrightarrow> w \<approx> z"
   149 apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
   123   by (metis approx_SComplex_mult_cancel_zero approx_minus_iff right_diff_distrib)
   150 apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
       
   151 done
       
   152 
   124 
   153 lemma approx_SComplex_mult_cancel_iff1 [simp]:
   125 lemma approx_SComplex_mult_cancel_iff1 [simp]:
   154      "[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w \<approx> a*z) = (w \<approx> z)"
   126      "\<lbrakk>a \<in> SComplex; a \<noteq> 0\<rbrakk> \<Longrightarrow> (a*w \<approx> a*z) = (w \<approx> z)"
   155 by (auto intro!: approx_mult2 Standard_subset_HFinite [THEN subsetD]
   127   by (metis HFinite_star_of SComplex_iff approx_SComplex_mult_cancel approx_mult2)
   156             intro: approx_SComplex_mult_cancel)
       
   157 
   128 
   158 (* TODO: generalize following theorems: hcmod -> hnorm *)
   129 (* TODO: generalize following theorems: hcmod -> hnorm *)
   159 
   130 
   160 lemma approx_hcmod_approx_zero: "(x \<approx> y) = (hcmod (y - x) \<approx> 0)"
   131 lemma approx_hcmod_approx_zero: "(x \<approx> y) = (hcmod (y - x) \<approx> 0)"
   161 apply (subst hnorm_minus_commute)
   132   by (simp add: Infinitesimal_hcmod_iff approx_def hnorm_minus_commute)
   162 apply (simp add: approx_def Infinitesimal_hcmod_iff)
       
   163 done
       
   164 
   133 
   165 lemma approx_approx_zero_iff: "(x \<approx> 0) = (hcmod x \<approx> 0)"
   134 lemma approx_approx_zero_iff: "(x \<approx> 0) = (hcmod x \<approx> 0)"
   166 by (simp add: approx_hcmod_approx_zero)
   135 by (simp add: approx_hcmod_approx_zero)
   167 
   136 
   168 lemma approx_minus_zero_cancel_iff [simp]: "(-x \<approx> 0) = (x \<approx> 0)"
   137 lemma approx_minus_zero_cancel_iff [simp]: "(-x \<approx> 0) = (x \<approx> 0)"
   169 by (simp add: approx_def)
   138 by (simp add: approx_def)
   170 
   139 
   171 lemma Infinitesimal_hcmod_add_diff:
   140 lemma Infinitesimal_hcmod_add_diff:
   172      "u \<approx> 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
   141      "u \<approx> 0 \<Longrightarrow> hcmod(x + u) - hcmod x \<in> Infinitesimal"
   173 apply (drule approx_approx_zero_iff [THEN iffD1])
   142   by (metis add.commute add.left_neutral approx_add_right_iff approx_def approx_hnorm)
   174 apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2)
   143 
   175 apply (auto simp add: mem_infmal_iff [symmetric])
   144 lemma approx_hcmod_add_hcmod: "u \<approx> 0 \<Longrightarrow> hcmod(x + u) \<approx> hcmod x"
   176 apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1])
   145   using Infinitesimal_hcmod_add_diff approx_def by blast
   177 apply auto
       
   178 done
       
   179 
       
   180 lemma approx_hcmod_add_hcmod: "u \<approx> 0 ==> hcmod(x + u) \<approx> hcmod x"
       
   181 apply (rule approx_minus_iff [THEN iffD2])
       
   182 apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric])
       
   183 done
       
   184 
   146 
   185 
   147 
   186 subsection\<open>Zero is the Only Infinitesimal Complex Number\<close>
   148 subsection\<open>Zero is the Only Infinitesimal Complex Number\<close>
   187 
   149 
   188 lemma Infinitesimal_less_SComplex:
   150 lemma Infinitesimal_less_SComplex:
   189    "[| x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x"
   151   "\<lbrakk>x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x\<rbrakk> \<Longrightarrow> hcmod y < hcmod x"
   190 by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff)
   152   by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff)
   191 
   153 
   192 lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
   154 lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
   193 by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
   155   by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
   194 
   156 
   195 lemma SComplex_Infinitesimal_zero:
   157 lemma SComplex_Infinitesimal_zero:
   196      "[| x \<in> SComplex; x \<in> Infinitesimal|] ==> x = 0"
   158   "\<lbrakk>x \<in> SComplex; x \<in> Infinitesimal\<rbrakk> \<Longrightarrow> x = 0"
   197 by (cut_tac SComplex_Int_Infinitesimal_zero, blast)
   159   using SComplex_iff by auto
   198 
   160 
   199 lemma SComplex_HFinite_diff_Infinitesimal:
   161 lemma SComplex_HFinite_diff_Infinitesimal:
   200      "[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
   162   "\<lbrakk>x \<in> SComplex; x \<noteq> 0\<rbrakk> \<Longrightarrow> x \<in> HFinite - Infinitesimal"
   201 by (auto dest: SComplex_Infinitesimal_zero Standard_subset_HFinite [THEN subsetD])
   163   using SComplex_iff by auto
   202 
       
   203 lemma hcomplex_of_complex_HFinite_diff_Infinitesimal:
       
   204      "hcomplex_of_complex x \<noteq> 0 
       
   205       ==> hcomplex_of_complex x \<in> HFinite - Infinitesimal"
       
   206 by (rule SComplex_HFinite_diff_Infinitesimal, auto)
       
   207 
   164 
   208 lemma numeral_not_Infinitesimal [simp]:
   165 lemma numeral_not_Infinitesimal [simp]:
   209      "numeral w \<noteq> (0::hcomplex) ==> (numeral w::hcomplex) \<notin> Infinitesimal"
   166   "numeral w \<noteq> (0::hcomplex) \<Longrightarrow> (numeral w::hcomplex) \<notin> Infinitesimal"
   210 by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
   167   by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
   211 
   168 
   212 lemma approx_SComplex_not_zero:
   169 lemma approx_SComplex_not_zero:
   213      "[| y \<in> SComplex; x \<approx> y; y\<noteq> 0 |] ==> x \<noteq> 0"
   170   "\<lbrakk>y \<in> SComplex; x \<approx> y; y\<noteq> 0\<rbrakk> \<Longrightarrow> x \<noteq> 0"
   214 by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
   171   by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
   215 
   172 
   216 lemma SComplex_approx_iff:
   173 lemma SComplex_approx_iff:
   217      "[|x \<in> SComplex; y \<in> SComplex|] ==> (x \<approx> y) = (x = y)"
   174   "\<lbrakk>x \<in> SComplex; y \<in> SComplex\<rbrakk> \<Longrightarrow> (x \<approx> y) = (x = y)"
   218 by (auto simp add: Standard_def)
   175   by (auto simp add: Standard_def)
   219 
       
   220 lemma numeral_Infinitesimal_iff [simp]:
       
   221      "((numeral w :: hcomplex) \<in> Infinitesimal) =
       
   222       (numeral w = (0::hcomplex))"
       
   223 apply (rule iffI)
       
   224 apply (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
       
   225 apply (simp (no_asm_simp))
       
   226 done
       
   227 
   176 
   228 lemma approx_unique_complex:
   177 lemma approx_unique_complex:
   229      "[| r \<in> SComplex; s \<in> SComplex; r \<approx> x; s \<approx> x|] ==> r = s"
   178   "\<lbrakk>r \<in> SComplex; s \<in> SComplex; r \<approx> x; s \<approx> x\<rbrakk> \<Longrightarrow> r = s"
   230 by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
   179   by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
   231 
   180 
   232 subsection \<open>Properties of \<^term>\<open>hRe\<close>, \<^term>\<open>hIm\<close> and \<^term>\<open>HComplex\<close>\<close>
   181 subsection \<open>Properties of \<^term>\<open>hRe\<close>, \<^term>\<open>hIm\<close> and \<^term>\<open>HComplex\<close>\<close>
   233 
   182 
   234 
       
   235 lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x"
   183 lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x"
   236 by transfer (rule abs_Re_le_cmod)
   184   by transfer (rule abs_Re_le_cmod)
   237 
   185 
   238 lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x"
   186 lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x"
   239 by transfer (rule abs_Im_le_cmod)
   187   by transfer (rule abs_Im_le_cmod)
   240 
   188 
   241 lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal"
   189 lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal"
   242 apply (rule InfinitesimalI2, simp)
   190   using Infinitesimal_hcmod_iff abs_hRe_le_hcmod hrabs_le_Infinitesimal by blast
   243 apply (rule order_le_less_trans [OF abs_hRe_le_hcmod])
       
   244 apply (erule (1) InfinitesimalD2)
       
   245 done
       
   246 
   191 
   247 lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal"
   192 lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal"
   248 apply (rule InfinitesimalI2, simp)
   193   using Infinitesimal_hcmod_iff abs_hIm_le_hcmod hrabs_le_Infinitesimal by blast
   249 apply (rule order_le_less_trans [OF abs_hIm_le_hcmod])
       
   250 apply (erule (1) InfinitesimalD2)
       
   251 done
       
   252 
       
   253 lemma real_sqrt_lessI: "\<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> sqrt x < u"
       
   254 (* TODO: this belongs somewhere else *)
       
   255 by (frule real_sqrt_less_mono) simp
       
   256 
       
   257 lemma hypreal_sqrt_lessI:
       
   258   "\<And>x u. \<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u"
       
   259 by transfer (rule real_sqrt_lessI)
       
   260  
       
   261 lemma hypreal_sqrt_ge_zero: "\<And>x. 0 \<le> x \<Longrightarrow> 0 \<le> ( *f* sqrt) x"
       
   262 by transfer (rule real_sqrt_ge_zero)
       
   263 
       
   264 lemma Infinitesimal_sqrt:
       
   265   "\<lbrakk>x \<in> Infinitesimal; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> Infinitesimal"
       
   266 apply (rule InfinitesimalI2)
       
   267 apply (drule_tac r="r\<^sup>2" in InfinitesimalD2, simp)
       
   268 apply (simp add: hypreal_sqrt_ge_zero)
       
   269 apply (rule hypreal_sqrt_lessI, simp_all)
       
   270 done
       
   271 
   194 
   272 lemma Infinitesimal_HComplex:
   195 lemma Infinitesimal_HComplex:
   273   "\<lbrakk>x \<in> Infinitesimal; y \<in> Infinitesimal\<rbrakk> \<Longrightarrow> HComplex x y \<in> Infinitesimal"
   196   "\<lbrakk>x \<in> Infinitesimal; y \<in> Infinitesimal\<rbrakk> \<Longrightarrow> HComplex x y \<in> Infinitesimal"
   274 apply (rule Infinitesimal_hcmod_iff [THEN iffD2])
   197 apply (rule Infinitesimal_hcmod_iff [THEN iffD2])
   275 apply (simp add: hcmod_i)
   198 apply (simp add: hcmod_i)
   278 apply (erule Infinitesimal_hrealpow, simp)
   201 apply (erule Infinitesimal_hrealpow, simp)
   279 done
   202 done
   280 
   203 
   281 lemma hcomplex_Infinitesimal_iff:
   204 lemma hcomplex_Infinitesimal_iff:
   282   "(x \<in> Infinitesimal) = (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)"
   205   "(x \<in> Infinitesimal) = (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)"
   283 apply (safe intro!: Infinitesimal_hRe Infinitesimal_hIm)
   206   using Infinitesimal_HComplex Infinitesimal_hIm Infinitesimal_hRe by fastforce
   284 apply (drule (1) Infinitesimal_HComplex, simp)
       
   285 done
       
   286 
   207 
   287 lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
   208 lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
   288 by transfer simp
   209   by transfer simp
   289 
   210 
   290 lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
   211 lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
   291 by transfer simp
   212   by transfer simp
   292 
   213 
   293 lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
   214 lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
   294 unfolding approx_def by (drule Infinitesimal_hRe) simp
   215   unfolding approx_def by (drule Infinitesimal_hRe) simp
   295 
   216 
   296 lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y"
   217 lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y"
   297 unfolding approx_def by (drule Infinitesimal_hIm) simp
   218   unfolding approx_def by (drule Infinitesimal_hIm) simp
   298 
   219 
   299 lemma approx_HComplex:
   220 lemma approx_HComplex:
   300   "\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d"
   221   "\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d"
   301 unfolding approx_def by (simp add: Infinitesimal_HComplex)
   222   unfolding approx_def by (simp add: Infinitesimal_HComplex)
   302 
   223 
   303 lemma hcomplex_approx_iff:
   224 lemma hcomplex_approx_iff:
   304   "(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)"
   225   "(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)"
   305 unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
   226   unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
   306 
   227 
   307 lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite"
   228 lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite"
   308 apply (auto simp add: HFinite_def SReal_def)
   229   using HFinite_bounded_hcmod abs_ge_zero abs_hRe_le_hcmod by blast
   309 apply (rule_tac x="star_of r" in exI, simp)
       
   310 apply (erule order_le_less_trans [OF abs_hRe_le_hcmod])
       
   311 done
       
   312 
   230 
   313 lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite"
   231 lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite"
   314 apply (auto simp add: HFinite_def SReal_def)
   232   using HFinite_bounded_hcmod abs_ge_zero abs_hIm_le_hcmod by blast
   315 apply (rule_tac x="star_of r" in exI, simp)
       
   316 apply (erule order_le_less_trans [OF abs_hIm_le_hcmod])
       
   317 done
       
   318 
   233 
   319 lemma HFinite_HComplex:
   234 lemma HFinite_HComplex:
   320   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> HComplex x y \<in> HFinite"
   235   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> HComplex x y \<in> HFinite"
   321 apply (subgoal_tac "HComplex x 0 + HComplex 0 y \<in> HFinite", simp)
   236 apply (subgoal_tac "HComplex x 0 + HComplex 0 y \<in> HFinite", simp)
   322 apply (rule HFinite_add)
   237 apply (rule HFinite_add)
   324 apply (simp add: HFinite_hcmod_iff hcmod_i)
   239 apply (simp add: HFinite_hcmod_iff hcmod_i)
   325 done
   240 done
   326 
   241 
   327 lemma hcomplex_HFinite_iff:
   242 lemma hcomplex_HFinite_iff:
   328   "(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)"
   243   "(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)"
   329 apply (safe intro!: HFinite_hRe HFinite_hIm)
   244   using HFinite_HComplex HFinite_hIm HFinite_hRe by fastforce
   330 apply (drule (1) HFinite_HComplex, simp)
       
   331 done
       
   332 
   245 
   333 lemma hcomplex_HInfinite_iff:
   246 lemma hcomplex_HInfinite_iff:
   334   "(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)"
   247   "(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)"
   335 by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
   248   by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
   336 
   249 
   337 lemma hcomplex_of_hypreal_approx_iff [simp]:
   250 lemma hcomplex_of_hypreal_approx_iff [simp]:
   338      "(hcomplex_of_hypreal x \<approx> hcomplex_of_hypreal z) = (x \<approx> z)"
   251   "(hcomplex_of_hypreal x \<approx> hcomplex_of_hypreal z) = (x \<approx> z)"
   339 by (simp add: hcomplex_approx_iff)
   252   by (simp add: hcomplex_approx_iff)
   340 
       
   341 lemma Standard_HComplex:
       
   342   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> HComplex x y \<in> Standard"
       
   343 by (simp add: HComplex_def)
       
   344 
   253 
   345 (* Here we go - easy proof now!! *)
   254 (* Here we go - easy proof now!! *)
   346 lemma stc_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> SComplex. x \<approx> t"
   255 lemma stc_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> SComplex. x \<approx> t"
   347 apply (simp add: hcomplex_HFinite_iff hcomplex_approx_iff)
   256 apply (simp add: hcomplex_HFinite_iff hcomplex_approx_iff)
   348 apply (rule_tac x="HComplex (st (hRe x)) (st (hIm x))" in bexI)
   257 apply (rule_tac x="HComplex (st (hRe x)) (st (hIm x))" in bexI)
   349 apply (simp add: st_approx_self [THEN approx_sym])
   258 apply (simp add: st_approx_self [THEN approx_sym])
   350 apply (simp add: Standard_HComplex st_SReal [unfolded Reals_eq_Standard])
   259 apply (simp add: Standard_HComplex st_SReal [unfolded Reals_eq_Standard])
   351 done
   260 done
   352 
   261 
   353 lemma stc_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t. t \<in> SComplex \<and> x \<approx> t"
   262 lemma stc_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t. t \<in> SComplex \<and> x \<approx> t"
   354 apply (drule stc_part_Ex, safe)
   263   using approx_sym approx_unique_complex stc_part_Ex by blast
   355 apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
       
   356 apply (auto intro!: approx_unique_complex)
       
   357 done
       
   358 
       
   359 lemmas hcomplex_of_complex_approx_inverse =
       
   360   hcomplex_of_complex_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
       
   361 
   264 
   362 
   265 
   363 subsection\<open>Theorems About Monads\<close>
   266 subsection\<open>Theorems About Monads\<close>
   364 
   267 
   365 lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x \<in> monad 0)"
   268 lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x \<in> monad 0)"
   366 by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
   269   by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
   367 
   270 
   368 
   271 
   369 subsection\<open>Theorems About Standard Part\<close>
   272 subsection\<open>Theorems About Standard Part\<close>
   370 
   273 
   371 lemma stc_approx_self: "x \<in> HFinite ==> stc x \<approx> x"
   274 lemma stc_approx_self: "x \<in> HFinite \<Longrightarrow> stc x \<approx> x"
   372 apply (simp add: stc_def)
   275   unfolding stc_def
   373 apply (frule stc_part_Ex, safe)
   276   by (metis (no_types, lifting) approx_reorient someI_ex stc_part_Ex1)
   374 apply (rule someI2)
   277 
   375 apply (auto intro: approx_sym)
   278 lemma stc_SComplex: "x \<in> HFinite \<Longrightarrow> stc x \<in> SComplex"
   376 done
   279   unfolding stc_def
   377 
   280   by (metis (no_types, lifting) SComplex_iff approx_sym someI_ex stc_part_Ex)
   378 lemma stc_SComplex: "x \<in> HFinite ==> stc x \<in> SComplex"
   281 
   379 apply (simp add: stc_def)
   282 lemma stc_HFinite: "x \<in> HFinite \<Longrightarrow> stc x \<in> HFinite"
   380 apply (frule stc_part_Ex, safe)
   283   by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
   381 apply (rule someI2)
       
   382 apply (auto intro: approx_sym)
       
   383 done
       
   384 
       
   385 lemma stc_HFinite: "x \<in> HFinite ==> stc x \<in> HFinite"
       
   386 by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
       
   387 
   284 
   388 lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y"
   285 lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y"
   389 apply (frule Standard_subset_HFinite [THEN subsetD])
   286   by (metis SComplex_approx_iff SComplex_iff approx_monad_iff approx_star_of_HFinite stc_SComplex stc_approx_self)
   390 apply (drule (1) approx_HFinite)
   287 
   391 apply (unfold stc_def)
   288 lemma stc_SComplex_eq [simp]: "x \<in> SComplex \<Longrightarrow> stc x = x"
   392 apply (rule some_equality)
   289   by (simp add: stc_unique)
   393 apply (auto intro: approx_unique_complex)
       
   394 done
       
   395 
       
   396 lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x"
       
   397 apply (erule stc_unique)
       
   398 apply (rule approx_refl)
       
   399 done
       
   400 
       
   401 lemma stc_hcomplex_of_complex:
       
   402      "stc (hcomplex_of_complex x) = hcomplex_of_complex x"
       
   403 by auto
       
   404 
   290 
   405 lemma stc_eq_approx:
   291 lemma stc_eq_approx:
   406      "[| x \<in> HFinite; y \<in> HFinite; stc x = stc y |] ==> x \<approx> y"
   292   "\<lbrakk>x \<in> HFinite; y \<in> HFinite; stc x = stc y\<rbrakk> \<Longrightarrow> x \<approx> y"
   407 by (auto dest!: stc_approx_self elim!: approx_trans3)
   293   by (auto dest!: stc_approx_self elim!: approx_trans3)
   408 
   294 
   409 lemma approx_stc_eq:
   295 lemma approx_stc_eq:
   410      "[| x \<in> HFinite; y \<in> HFinite; x \<approx> y |] ==> stc x = stc y"
   296      "\<lbrakk>x \<in> HFinite; y \<in> HFinite; x \<approx> y\<rbrakk> \<Longrightarrow> stc x = stc y"
   411 by (blast intro: approx_trans approx_trans2 SComplex_approx_iff [THEN iffD1]
   297   by (metis approx_sym approx_trans3 stc_part_Ex1 stc_unique)
   412           dest: stc_approx_self stc_SComplex)
       
   413 
   298 
   414 lemma stc_eq_approx_iff:
   299 lemma stc_eq_approx_iff:
   415      "[| x \<in> HFinite; y \<in> HFinite|] ==> (x \<approx> y) = (stc x = stc y)"
   300   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> (x \<approx> y) = (stc x = stc y)"
   416 by (blast intro: approx_stc_eq stc_eq_approx)
   301   by (blast intro: approx_stc_eq stc_eq_approx)
   417 
   302 
   418 lemma stc_Infinitesimal_add_SComplex:
   303 lemma stc_Infinitesimal_add_SComplex:
   419      "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(x + e) = x"
   304   "\<lbrakk>x \<in> SComplex; e \<in> Infinitesimal\<rbrakk> \<Longrightarrow> stc(x + e) = x"
   420 apply (erule stc_unique)
   305   using Infinitesimal_add_approx_self stc_unique by blast
   421 apply (erule Infinitesimal_add_approx_self)
       
   422 done
       
   423 
   306 
   424 lemma stc_Infinitesimal_add_SComplex2:
   307 lemma stc_Infinitesimal_add_SComplex2:
   425      "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(e + x) = x"
   308   "\<lbrakk>x \<in> SComplex; e \<in> Infinitesimal\<rbrakk> \<Longrightarrow> stc(e + x) = x"
   426 apply (erule stc_unique)
   309   using Infinitesimal_add_approx_self2 stc_unique by blast
   427 apply (erule Infinitesimal_add_approx_self2)
       
   428 done
       
   429 
   310 
   430 lemma HFinite_stc_Infinitesimal_add:
   311 lemma HFinite_stc_Infinitesimal_add:
   431      "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
   312   "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
   432 by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
   313   by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
   433 
   314 
   434 lemma stc_add:
   315 lemma stc_add:
   435      "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x + y) = stc(x) + stc(y)"
   316   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> stc (x + y) = stc(x) + stc(y)"
   436 by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
   317   by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
   437 
   318 
   438 lemma stc_numeral [simp]: "stc (numeral w) = numeral w"
   319 lemma stc_zero: "stc 0 = 0"
   439 by (rule Standard_numeral [THEN stc_SComplex_eq])
   320   by simp
   440 
   321 
   441 lemma stc_zero [simp]: "stc 0 = 0"
   322 lemma stc_one: "stc 1 = 1"
   442 by simp
   323   by simp
   443 
   324 
   444 lemma stc_one [simp]: "stc 1 = 1"
   325 lemma stc_minus: "y \<in> HFinite \<Longrightarrow> stc(-y) = -stc(y)"
   445 by simp
   326   by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
   446 
       
   447 lemma stc_minus: "y \<in> HFinite ==> stc(-y) = -stc(y)"
       
   448 by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
       
   449 
   327 
   450 lemma stc_diff: 
   328 lemma stc_diff: 
   451      "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x-y) = stc(x) - stc(y)"
   329   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> stc (x-y) = stc(x) - stc(y)"
   452 by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
   330   by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
   453 
   331 
   454 lemma stc_mult:
   332 lemma stc_mult:
   455      "[| x \<in> HFinite; y \<in> HFinite |]  
   333   "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk>  
   456                ==> stc (x * y) = stc(x) * stc(y)"
   334                \<Longrightarrow> stc (x * y) = stc(x) * stc(y)"
   457 by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
   335   by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
   458 
   336 
   459 lemma stc_Infinitesimal: "x \<in> Infinitesimal ==> stc x = 0"
   337 lemma stc_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> stc x = 0"
   460 by (simp add: stc_unique mem_infmal_iff)
   338   by (simp add: stc_unique mem_infmal_iff)
   461 
   339 
   462 lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
   340 lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal"
   463 by (fast intro: stc_Infinitesimal)
   341   by (fast intro: stc_Infinitesimal)
   464 
   342 
   465 lemma stc_inverse:
   343 lemma stc_inverse:
   466      "[| x \<in> HFinite; stc x \<noteq> 0 |]  
   344   "\<lbrakk>x \<in> HFinite; stc x \<noteq> 0\<rbrakk>  \<Longrightarrow> stc(inverse x) = inverse (stc x)"
   467       ==> stc(inverse x) = inverse (stc x)"
   345   apply (drule stc_not_Infinitesimal)
   468 apply (drule stc_not_Infinitesimal)
   346   apply (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse)
   469 apply (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse)
   347   done
   470 done
       
   471 
   348 
   472 lemma stc_divide [simp]:
   349 lemma stc_divide [simp]:
   473      "[| x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0 |]  
   350   "\<lbrakk>x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0\<rbrakk>  
   474       ==> stc(x/y) = (stc x) / (stc y)"
   351       \<Longrightarrow> stc(x/y) = (stc x) / (stc y)"
   475 by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
   352   by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
   476 
   353 
   477 lemma stc_idempotent [simp]: "x \<in> HFinite ==> stc(stc(x)) = stc(x)"
   354 lemma stc_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> stc(stc(x)) = stc(x)"
   478 by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
   355   by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
   479 
   356 
   480 lemma HFinite_HFinite_hcomplex_of_hypreal:
   357 lemma HFinite_HFinite_hcomplex_of_hypreal:
   481      "z \<in> HFinite ==> hcomplex_of_hypreal z \<in> HFinite"
   358   "z \<in> HFinite \<Longrightarrow> hcomplex_of_hypreal z \<in> HFinite"
   482 by (simp add: hcomplex_HFinite_iff)
   359   by (simp add: hcomplex_HFinite_iff)
   483 
   360 
   484 lemma SComplex_SReal_hcomplex_of_hypreal:
   361 lemma SComplex_SReal_hcomplex_of_hypreal:
   485      "x \<in> \<real> ==>  hcomplex_of_hypreal x \<in> SComplex"
   362      "x \<in> \<real> \<Longrightarrow>  hcomplex_of_hypreal x \<in> SComplex"
   486 apply (rule Standard_of_hypreal)
   363   by (simp add: Reals_eq_Standard)
   487 apply (simp add: Reals_eq_Standard)
       
   488 done
       
   489 
   364 
   490 lemma stc_hcomplex_of_hypreal: 
   365 lemma stc_hcomplex_of_hypreal: 
   491  "z \<in> HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
   366  "z \<in> HFinite \<Longrightarrow> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
   492 apply (rule stc_unique)
   367 apply (rule stc_unique)
   493 apply (rule SComplex_SReal_hcomplex_of_hypreal)
   368 apply (rule SComplex_SReal_hcomplex_of_hypreal)
   494 apply (erule st_SReal)
   369 apply (erule st_SReal)
   495 apply (simp add: hcomplex_of_hypreal_approx_iff st_approx_self)
   370 apply (simp add: hcomplex_of_hypreal_approx_iff st_approx_self)
   496 done
   371 done
   497 
   372 
   498 (*
   373 (*
   499 Goal "x \<in> HFinite ==> hcmod(stc x) = st(hcmod x)"
   374 Goal "x \<in> HFinite \<Longrightarrow> hcmod(stc x) = st(hcmod x)"
   500 by (dtac stc_approx_self 1)
   375 by (dtac stc_approx_self 1)
   501 by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym]));
   376 by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym]));
   502 
   377 
   503 
   378 
   504 approx_hcmod_add_hcmod
   379 approx_hcmod_add_hcmod