src/ZF/Cardinal.ML
changeset 437 435875e4b21d
parent 435 ca5356bd315a
child 467 92868dab2939
equal deleted inserted replaced
436:0cdc840297bb 437:435875e4b21d
    53 
    53 
    54 
    54 
    55 (** Equipollence is an equivalence relation **)
    55 (** Equipollence is an equivalence relation **)
    56 
    56 
    57 goalw Cardinal.thy [eqpoll_def] "X eqpoll X";
    57 goalw Cardinal.thy [eqpoll_def] "X eqpoll X";
    58 br exI 1;
    58 by (rtac exI 1);
    59 br id_bij 1;
    59 by (rtac id_bij 1);
    60 val eqpoll_refl = result();
    60 val eqpoll_refl = result();
    61 
    61 
    62 goalw Cardinal.thy [eqpoll_def] "!!X Y. X eqpoll Y ==> Y eqpoll X";
    62 goalw Cardinal.thy [eqpoll_def] "!!X Y. X eqpoll Y ==> Y eqpoll X";
    63 by (fast_tac (ZF_cs addIs [bij_converse_bij]) 1);
    63 by (fast_tac (ZF_cs addIs [bij_converse_bij]) 1);
    64 val eqpoll_sym = result();
    64 val eqpoll_sym = result();
    69 val eqpoll_trans = result();
    69 val eqpoll_trans = result();
    70 
    70 
    71 (** Le-pollence is a partial ordering **)
    71 (** Le-pollence is a partial ordering **)
    72 
    72 
    73 goalw Cardinal.thy [lepoll_def] "!!X Y. X<=Y ==> X lepoll Y";
    73 goalw Cardinal.thy [lepoll_def] "!!X Y. X<=Y ==> X lepoll Y";
    74 br exI 1;
    74 by (rtac exI 1);
    75 be id_subset_inj 1;
    75 by (etac id_subset_inj 1);
    76 val subset_imp_lepoll = result();
    76 val subset_imp_lepoll = result();
    77 
    77 
    78 val lepoll_refl = subset_refl RS subset_imp_lepoll;
    78 val lepoll_refl = subset_refl RS subset_imp_lepoll;
    79 
    79 
    80 goalw Cardinal.thy [eqpoll_def, bij_def, lepoll_def]
    80 goalw Cardinal.thy [eqpoll_def, bij_def, lepoll_def]
    95 by (REPEAT (assume_tac 1));
    95 by (REPEAT (assume_tac 1));
    96 val eqpollI = result();
    96 val eqpollI = result();
    97 
    97 
    98 val [major,minor] = goal Cardinal.thy
    98 val [major,minor] = goal Cardinal.thy
    99     "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P";
    99     "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P";
   100 br minor 1;
   100 by (rtac minor 1);
   101 by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1));
   101 by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1));
   102 val eqpollE = result();
   102 val eqpollE = result();
   103 
   103 
   104 goal Cardinal.thy "X eqpoll Y <-> X lepoll Y & Y lepoll X";
   104 goal Cardinal.thy "X eqpoll Y <-> X lepoll Y & Y lepoll X";
   105 by (fast_tac (ZF_cs addIs [eqpollI] addSEs [eqpollE]) 1);
   105 by (fast_tac (ZF_cs addIs [eqpollI] addSEs [eqpollE]) 1);
   111 val [premP,premOrd,premNot] = goalw Cardinal.thy [Least_def]
   111 val [premP,premOrd,premNot] = goalw Cardinal.thy [Least_def]
   112     "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x.P(x)) = i";
   112     "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x.P(x)) = i";
   113 by (rtac the_equality 1);
   113 by (rtac the_equality 1);
   114 by (fast_tac (ZF_cs addSIs [premP,premOrd,premNot]) 1);
   114 by (fast_tac (ZF_cs addSIs [premP,premOrd,premNot]) 1);
   115 by (REPEAT (etac conjE 1));
   115 by (REPEAT (etac conjE 1));
   116 be (premOrd RS Ord_linear_lt) 1;
   116 by (etac (premOrd RS Ord_linear_lt) 1);
   117 by (ALLGOALS (fast_tac (ZF_cs addSIs [premP] addSDs [premNot])));
   117 by (ALLGOALS (fast_tac (ZF_cs addSIs [premP] addSDs [premNot])));
   118 val Least_equality = result();
   118 val Least_equality = result();
   119 
   119 
   120 goal Cardinal.thy "!!i. [| P(i);  Ord(i) |] ==> P(LEAST x.P(x))";
   120 goal Cardinal.thy "!!i. [| P(i);  Ord(i) |] ==> P(LEAST x.P(x))";
   121 by (etac rev_mp 1);
   121 by (etac rev_mp 1);
   138 by (fast_tac (ZF_cs addEs [ltE, lt_trans1] addIs [leI, ltI]) 1);
   138 by (fast_tac (ZF_cs addEs [ltE, lt_trans1] addIs [leI, ltI]) 1);
   139 val Least_le = result();
   139 val Least_le = result();
   140 
   140 
   141 (*LEAST really is the smallest*)
   141 (*LEAST really is the smallest*)
   142 goal Cardinal.thy "!!i. [| P(i);  i < (LEAST x.P(x)) |] ==> Q";
   142 goal Cardinal.thy "!!i. [| P(i);  i < (LEAST x.P(x)) |] ==> Q";
   143 br (Least_le RSN (2,lt_trans2) RS lt_anti_refl) 1;
   143 by (rtac (Least_le RSN (2,lt_trans2) RS lt_irrefl) 1);
   144 by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
   144 by (REPEAT (eresolve_tac [asm_rl, ltE] 1));
   145 val less_LeastE = result();
   145 val less_LeastE = result();
   146 
   146 
       
   147 (*If there is no such P then LEAST is vacuously 0*)
       
   148 goalw Cardinal.thy [Least_def]
       
   149     "!!P. [| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x.P(x)) = 0";
       
   150 by (rtac the_0 1);
       
   151 by (fast_tac ZF_cs 1);
       
   152 val Least_0 = result();
       
   153 
   147 goal Cardinal.thy "Ord(LEAST x.P(x))";
   154 goal Cardinal.thy "Ord(LEAST x.P(x))";
   148 by (res_inst_tac [("Q","EX i. Ord(i) & P(i)")] (excluded_middle RS disjE) 1);
   155 by (excluded_middle_tac "EX i. Ord(i) & P(i)" 1);
   149 by (safe_tac ZF_cs);
   156 by (safe_tac ZF_cs);
   150 br (Least_le RS ltE) 2;
   157 by (rtac (Least_le RS ltE) 2);
   151 by (REPEAT_SOME assume_tac);
   158 by (REPEAT_SOME assume_tac);
   152 bw Least_def;
   159 by (etac (Least_0 RS ssubst) 1);
   153 by (rtac (the_0 RS ssubst) 1 THEN rtac Ord_0 2);
   160 by (rtac Ord_0 1);
   154 by (fast_tac FOL_cs 1);
       
   155 val Ord_Least = result();
   161 val Ord_Least = result();
   156 
   162 
   157 
   163 
   158 (** Basic properties of cardinals **)
   164 (** Basic properties of cardinals **)
   159 
   165 
   163 by (simp_tac (FOL_ss addsimps prems) 1);
   169 by (simp_tac (FOL_ss addsimps prems) 1);
   164 val Least_cong = result();
   170 val Least_cong = result();
   165 
   171 
   166 (*Need AC to prove   X lepoll Y ==> |X| le |Y| ; see well_ord_lepoll_imp_le  *)
   172 (*Need AC to prove   X lepoll Y ==> |X| le |Y| ; see well_ord_lepoll_imp_le  *)
   167 goalw Cardinal.thy [eqpoll_def,cardinal_def] "!!X Y. X eqpoll Y ==> |X| = |Y|";
   173 goalw Cardinal.thy [eqpoll_def,cardinal_def] "!!X Y. X eqpoll Y ==> |X| = |Y|";
   168 br Least_cong 1;
   174 by (rtac Least_cong 1);
   169 by (fast_tac (ZF_cs addEs [comp_bij,bij_converse_bij]) 1);
   175 by (fast_tac (ZF_cs addEs [comp_bij,bij_converse_bij]) 1);
   170 val cardinal_cong = result();
   176 val cardinal_cong = result();
   171 
   177 
   172 (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)
   178 (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)
   173 goalw Cardinal.thy [eqpoll_def, cardinal_def]
   179 goalw Cardinal.thy [eqpoll_def, cardinal_def]
   174     "!!A. well_ord(A,r) ==> |A| eqpoll A";
   180     "!!A. well_ord(A,r) ==> |A| eqpoll A";
   175 br LeastI 1;
   181 by (rtac LeastI 1);
   176 be Ord_ordertype 2;
   182 by (etac Ord_ordertype 2);
   177 br exI 1;
   183 by (rtac exI 1);
   178 be (ordertype_bij RS bij_converse_bij) 1;
   184 by (etac (ordertype_bij RS bij_converse_bij) 1);
   179 val well_ord_cardinal_eqpoll = result();
   185 val well_ord_cardinal_eqpoll = result();
   180 
   186 
   181 val Ord_cardinal_eqpoll = well_ord_Memrel RS well_ord_cardinal_eqpoll 
   187 val Ord_cardinal_eqpoll = well_ord_Memrel RS well_ord_cardinal_eqpoll 
   182                           |> standard;
   188                           |> standard;
   183 
   189 
   184 goal Cardinal.thy
   190 goal Cardinal.thy
   185     "!!X Y. [| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X eqpoll Y";
   191     "!!X Y. [| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X eqpoll Y";
   186 br (eqpoll_sym RS eqpoll_trans) 1;
   192 by (rtac (eqpoll_sym RS eqpoll_trans) 1);
   187 be well_ord_cardinal_eqpoll 1;
   193 by (etac well_ord_cardinal_eqpoll 1);
   188 by (asm_simp_tac (ZF_ss addsimps [well_ord_cardinal_eqpoll]) 1);
   194 by (asm_simp_tac (ZF_ss addsimps [well_ord_cardinal_eqpoll]) 1);
   189 val well_ord_cardinal_eqE = result();
   195 val well_ord_cardinal_eqE = result();
   190 
   196 
   191 
   197 
   192 (** Observations from Kunen, page 28 **)
   198 (** Observations from Kunen, page 28 **)
   193 
   199 
   194 goalw Cardinal.thy [cardinal_def] "!!i. Ord(i) ==> |i| le i";
   200 goalw Cardinal.thy [cardinal_def] "!!i. Ord(i) ==> |i| le i";
   195 be (eqpoll_refl RS Least_le) 1;
   201 by (etac (eqpoll_refl RS Least_le) 1);
   196 val Ord_cardinal_le = result();
   202 val Ord_cardinal_le = result();
   197 
   203 
   198 goalw Cardinal.thy [Card_def] "!!i. Card(i) ==> |i| = i";
   204 goalw Cardinal.thy [Card_def] "!!i. Card(i) ==> |i| = i";
   199 be sym 1;
   205 by (etac sym 1);
   200 val Card_cardinal_eq = result();
   206 val Card_cardinal_eq = result();
   201 
   207 
   202 val prems = goalw Cardinal.thy [Card_def,cardinal_def]
   208 val prems = goalw Cardinal.thy [Card_def,cardinal_def]
   203     "[| Ord(i);  !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)";
   209     "[| Ord(i);  !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)";
   204 br (Least_equality RS ssubst) 1;
   210 by (rtac (Least_equality RS ssubst) 1);
   205 by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1));
   211 by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1));
   206 val CardI = result();
   212 val CardI = result();
   207 
   213 
   208 goalw Cardinal.thy [Card_def, cardinal_def] "!!i. Card(i) ==> Ord(i)";
   214 goalw Cardinal.thy [Card_def, cardinal_def] "!!i. Card(i) ==> Ord(i)";
   209 be ssubst 1;
   215 by (etac ssubst 1);
   210 br Ord_Least 1;
   216 by (rtac Ord_Least 1);
   211 val Card_is_Ord = result();
   217 val Card_is_Ord = result();
   212 
   218 
   213 goalw Cardinal.thy [cardinal_def] "Ord( |i| )";
   219 goalw Cardinal.thy [cardinal_def] "Ord( |A| )";
   214 br Ord_Least 1;
   220 by (rtac Ord_Least 1);
   215 val Ord_cardinal = result();
   221 val Ord_cardinal = result();
       
   222 
       
   223 goal Cardinal.thy "Card(0)";
       
   224 by (rtac (Ord_0 RS CardI) 1);
       
   225 by (fast_tac (ZF_cs addSEs [ltE]) 1);
       
   226 val Card_0 = result();
       
   227 
       
   228 goalw Cardinal.thy [cardinal_def] "Card( |A| )";
       
   229 by (excluded_middle_tac "EX i. Ord(i) & i eqpoll A" 1);
       
   230 by (etac (Least_0 RS ssubst) 1 THEN rtac Card_0 1);
       
   231 by (rtac (Ord_Least RS CardI) 1);
       
   232 by (safe_tac ZF_cs);
       
   233 by (rtac less_LeastE 1);
       
   234 by (assume_tac 2);
       
   235 by (etac eqpoll_trans 1);
       
   236 by (REPEAT (ares_tac [LeastI] 1));
       
   237 val Card_cardinal = result();
   216 
   238 
   217 (*Kunen's Lemma 10.5*)
   239 (*Kunen's Lemma 10.5*)
   218 goal Cardinal.thy "!!i j. [| |i| le j;  j le i |] ==> |j| = |i|";
   240 goal Cardinal.thy "!!i j. [| |i| le j;  j le i |] ==> |j| = |i|";
   219 br (eqpollI RS cardinal_cong) 1;
   241 by (rtac (eqpollI RS cardinal_cong) 1);
   220 be (le_imp_subset RS subset_imp_lepoll) 1;
   242 by (etac (le_imp_subset RS subset_imp_lepoll) 1);
   221 br lepoll_trans 1;
   243 by (rtac lepoll_trans 1);
   222 be (le_imp_subset RS subset_imp_lepoll) 2;
   244 by (etac (le_imp_subset RS subset_imp_lepoll) 2);
   223 br (eqpoll_sym RS eqpoll_imp_lepoll) 1;
   245 by (rtac (eqpoll_sym RS eqpoll_imp_lepoll) 1);
   224 br Ord_cardinal_eqpoll 1;
   246 by (rtac Ord_cardinal_eqpoll 1);
   225 by (REPEAT (eresolve_tac [ltE, Ord_succD] 1));
   247 by (REPEAT (eresolve_tac [ltE, Ord_succD] 1));
   226 val cardinal_eq_lemma = result();
   248 val cardinal_eq_lemma = result();
   227 
   249 
   228 goal Cardinal.thy "!!i j. i le j ==> |i| le |j|";
   250 goal Cardinal.thy "!!i j. i le j ==> |i| le |j|";
   229 by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1);
   251 by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1);
   230 by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
   252 by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
   231 br cardinal_eq_lemma 1;
   253 by (rtac cardinal_eq_lemma 1);
   232 ba 2;
   254 by (assume_tac 2);
   233 be le_trans 1;
   255 by (etac le_trans 1);
   234 be ltE 1;
   256 by (etac ltE 1);
   235 be Ord_cardinal_le 1;
   257 by (etac Ord_cardinal_le 1);
   236 val cardinal_mono = result();
   258 val cardinal_mono = result();
   237 
   259 
   238 (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)
   260 (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)
   239 goal Cardinal.thy "!!i j. [| |i| < |j|;  Ord(i);  Ord(j) |] ==> i < j";
   261 goal Cardinal.thy "!!i j. [| |i| < |j|;  Ord(i);  Ord(j) |] ==> i < j";
   240 br Ord_linear2 1;
   262 by (rtac Ord_linear2 1);
   241 by (REPEAT_SOME assume_tac);
   263 by (REPEAT_SOME assume_tac);
   242 be (lt_trans2 RS lt_anti_refl) 1;
   264 by (etac (lt_trans2 RS lt_irrefl) 1);
   243 be cardinal_mono 1;
   265 by (etac cardinal_mono 1);
   244 val cardinal_lt_imp_lt = result();
   266 val cardinal_lt_imp_lt = result();
   245 
   267 
   246 goal Cardinal.thy "!!i j. [| |i| < k;  Ord(i);  Card(k) |] ==> i < k";
   268 goal Cardinal.thy "!!i j. [| |i| < k;  Ord(i);  Card(k) |] ==> i < k";
   247 by (asm_simp_tac (ZF_ss addsimps 
   269 by (asm_simp_tac (ZF_ss addsimps 
   248 		  [cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1);
   270 		  [cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1);
   260     "!!A. [| x:A;  y:A;  z:A |] ==> swap(A,x,y)`(swap(A,x,y)`z) = z";
   282     "!!A. [| x:A;  y:A;  z:A |] ==> swap(A,x,y)`(swap(A,x,y)`z) = z";
   261 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
   283 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
   262 val swap_swap_identity = result();
   284 val swap_swap_identity = result();
   263 
   285 
   264 goal Cardinal.thy "!!A. [| x:A;  y:A |] ==> swap(A,x,y) : bij(A,A)";
   286 goal Cardinal.thy "!!A. [| x:A;  y:A |] ==> swap(A,x,y) : bij(A,A)";
   265 br nilpotent_imp_bijective 1;
   287 by (rtac nilpotent_imp_bijective 1);
   266 by (REPEAT (ares_tac [swap_type, comp_eq_id_iff RS iffD2,
   288 by (REPEAT (ares_tac [swap_type, comp_eq_id_iff RS iffD2,
   267 		      ballI, swap_swap_identity] 1));
   289 		      ballI, swap_swap_identity] 1));
   268 val swap_bij = result();
   290 val swap_bij = result();
   269 
   291 
   270 (*** The finite cardinals ***)
   292 (*** The finite cardinals ***)
   271 
   293 
   272 (*Lemma suggested by Mike Fourman*)
   294 (*Lemma suggested by Mike Fourman*)
   273 val [prem] = goalw Cardinal.thy [inj_def]
   295 val [prem] = goalw Cardinal.thy [inj_def]
   274  "f: inj(succ(m), succ(n)) ==> (lam x:m. if(f`x=n, f`m, f`x)) : inj(m,n)";
   296  "f: inj(succ(m), succ(n)) ==> (lam x:m. if(f`x=n, f`m, f`x)) : inj(m,n)";
   275 br CollectI 1;
   297 by (rtac CollectI 1);
   276 (*Proving it's in the function space m->n*)
   298 (*Proving it's in the function space m->n*)
   277 by (cut_facts_tac [prem] 1);
   299 by (cut_facts_tac [prem] 1);
   278 br (if_type RS lam_type) 1;
   300 by (rtac (if_type RS lam_type) 1);
   279 by (fast_tac (ZF_cs addSEs [mem_anti_refl] addEs [apply_funtype RS succE]) 1);
   301 by (fast_tac (ZF_cs addSEs [mem_irrefl] addEs [apply_funtype RS succE]) 1);
   280 by (fast_tac (ZF_cs addSEs [mem_anti_refl] addEs [apply_funtype RS succE]) 1);
   302 by (fast_tac (ZF_cs addSEs [mem_irrefl] addEs [apply_funtype RS succE]) 1);
   281 (*Proving it's injective*)
   303 (*Proving it's injective*)
   282 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
   304 by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1);
   283 (*Adding  prem  earlier would cause the simplifier to loop*)
   305 (*Adding  prem  earlier would cause the simplifier to loop*)
   284 by (cut_facts_tac [prem] 1);
   306 by (cut_facts_tac [prem] 1);
   285 by (fast_tac (ZF_cs addSEs [mem_anti_refl]) 1);
   307 by (fast_tac (ZF_cs addSEs [mem_irrefl]) 1);
   286 val inj_succ_succD = result();
   308 val inj_succ_succD = result();
   287 
   309 
   288 val [prem] = goalw Cardinal.thy [lepoll_def]
   310 val [prem] = goalw Cardinal.thy [lepoll_def]
   289     "m:nat ==> ALL n: nat. m lepoll n --> m le n";
   311     "m:nat ==> ALL n: nat. m lepoll n --> m le n";
   290 by (nat_ind_tac "m" [prem] 1);
   312 by (nat_ind_tac "m" [prem] 1);
   291 by (fast_tac (ZF_cs addSIs [nat_0_le]) 1);
   313 by (fast_tac (ZF_cs addSIs [nat_0_le]) 1);
   292 br ballI 1;
   314 by (rtac ballI 1);
   293 by (eres_inst_tac [("n","n")] natE 1);
   315 by (eres_inst_tac [("n","n")] natE 1);
   294 by (asm_simp_tac (ZF_ss addsimps [inj_def, succI1 RS Pi_empty2]) 1);
   316 by (asm_simp_tac (ZF_ss addsimps [inj_def, succI1 RS Pi_empty2]) 1);
   295 by (fast_tac (ZF_cs addSIs [succ_leI] addSDs [inj_succ_succD]) 1);
   317 by (fast_tac (ZF_cs addSIs [succ_leI] addSDs [inj_succ_succD]) 1);
   296 val nat_lepoll_imp_le_lemma = result();
   318 val nat_lepoll_imp_le_lemma = result();
   297 val nat_lepoll_imp_le = nat_lepoll_imp_le_lemma RS bspec RS mp |> standard;
   319 val nat_lepoll_imp_le = nat_lepoll_imp_le_lemma RS bspec RS mp |> standard;
   298 
   320 
   299 goal Cardinal.thy
   321 goal Cardinal.thy
   300     "!!m n. [| m:nat; n: nat |] ==> m eqpoll n <-> m = n";
   322     "!!m n. [| m:nat; n: nat |] ==> m eqpoll n <-> m = n";
   301 br iffI 1;
   323 by (rtac iffI 1);
   302 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
   324 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
   303 by (fast_tac (ZF_cs addIs [nat_lepoll_imp_le, le_asym] addSEs [eqpollE]) 1);
   325 by (fast_tac (ZF_cs addIs [nat_lepoll_imp_le, le_anti_sym] 
       
   326                     addSEs [eqpollE]) 1);
   304 val nat_eqpoll_iff = result();
   327 val nat_eqpoll_iff = result();
   305 
   328 
   306 goalw Cardinal.thy [Card_def,cardinal_def]
   329 goalw Cardinal.thy [Card_def,cardinal_def]
   307     "!!n. n: nat ==> Card(n)";
   330     "!!n. n: nat ==> Card(n)";
   308 br (Least_equality RS ssubst) 1;
   331 by (rtac (Least_equality RS ssubst) 1);
   309 by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl]));
   332 by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl]));
   310 by (asm_simp_tac (ZF_ss addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1);
   333 by (asm_simp_tac (ZF_ss addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1);
   311 by (fast_tac (ZF_cs addSEs [lt_anti_refl]) 1);
   334 by (fast_tac (ZF_cs addSEs [lt_irrefl]) 1);
   312 val nat_into_Card = result();
   335 val nat_into_Card = result();
   313 
       
   314 val Card_0 = nat_0I RS nat_into_Card;
       
   315 
   336 
   316 (*Part of Kunen's Lemma 10.6*)
   337 (*Part of Kunen's Lemma 10.6*)
   317 goal Cardinal.thy "!!n. [| succ(n) lepoll n;  n:nat |] ==> P";
   338 goal Cardinal.thy "!!n. [| succ(n) lepoll n;  n:nat |] ==> P";
   318 br (nat_lepoll_imp_le RS lt_anti_refl) 1;
   339 by (rtac (nat_lepoll_imp_le RS lt_irrefl) 1);
   319 by (REPEAT (ares_tac [nat_succI] 1));
   340 by (REPEAT (ares_tac [nat_succI] 1));
   320 val succ_lepoll_natE = result();
   341 val succ_lepoll_natE = result();
   321 
   342 
   322 
   343 
   323 (*** The first infinite cardinal: Omega, or nat ***)
   344 (*** The first infinite cardinal: Omega, or nat ***)
   324 
   345 
   325 (*This implies Kunen's Lemma 10.6*)
   346 (*This implies Kunen's Lemma 10.6*)
   326 goal Cardinal.thy "!!n. [| n<i;  n:nat |] ==> ~ i lepoll n";
   347 goal Cardinal.thy "!!n. [| n<i;  n:nat |] ==> ~ i lepoll n";
   327 br notI 1;
   348 by (rtac notI 1);
   328 by (rtac succ_lepoll_natE 1 THEN assume_tac 2);
   349 by (rtac succ_lepoll_natE 1 THEN assume_tac 2);
   329 by (rtac lepoll_trans 1 THEN assume_tac 2);
   350 by (rtac lepoll_trans 1 THEN assume_tac 2);
   330 be ltE 1;
   351 by (etac ltE 1);
   331 by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1));
   352 by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1));
   332 val lt_not_lepoll = result();
   353 val lt_not_lepoll = result();
   333 
   354 
   334 goalw Cardinal.thy [Card_def,cardinal_def] "Card(nat)";
       
   335 br (Least_equality RS ssubst) 1;
       
   336 by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl]));
       
   337 be ltE 1;
       
   338 by (asm_simp_tac (ZF_ss addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1);
       
   339 val Card_nat = result();
       
   340 
       
   341 goal Cardinal.thy "!!i n. [| Ord(i);  n:nat |] ==> i eqpoll n <-> i=n";
   355 goal Cardinal.thy "!!i n. [| Ord(i);  n:nat |] ==> i eqpoll n <-> i=n";
   342 br iffI 1;
   356 by (rtac iffI 1);
   343 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
   357 by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2);
   344 by (rtac Ord_linear_lt 1);
   358 by (rtac Ord_linear_lt 1);
   345 by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord]));
   359 by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord]));
   346 by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN
   360 by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN
   347     REPEAT (assume_tac 1));
   361     REPEAT (assume_tac 1));
   348 by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1)));
   362 by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1)));
   349 be eqpoll_imp_lepoll 1;
   363 by (etac eqpoll_imp_lepoll 1);
   350 val Ord_nat_eqpoll_iff = result();
   364 val Ord_nat_eqpoll_iff = result();
   351 
   365 
   352 
   366 goalw Cardinal.thy [Card_def,cardinal_def] "Card(nat)";
       
   367 by (rtac (Least_equality RS ssubst) 1);
       
   368 by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl]));
       
   369 by (etac ltE 1);
       
   370 by (asm_simp_tac (ZF_ss addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1);
       
   371 val Card_nat = result();
       
   372 
       
   373 (*Allows showing that |i| is a limit cardinal*)
       
   374 goal Cardinal.thy  "!!i. nat le i ==> nat le |i|";
       
   375 by (rtac (Card_nat RS Card_cardinal_eq RS subst) 1);
       
   376 by (etac cardinal_mono 1);
       
   377 val nat_le_cardinal = result();
       
   378