src/HOL/BNF_Fixpoint_Base.thy
changeset 58128 43a1ba26a8cb
parent 58112 8081087096ad
child 58159 e3d1912a0c8f
equal deleted inserted replaced
58127:b7cab82f488e 58128:43a1ba26a8cb
       
     1 (*  Title:      HOL/BNF_Fixpoint_Base.thy
       
     2     Author:     Lorenz Panny, TU Muenchen
       
     3     Author:     Dmitriy Traytel, TU Muenchen
       
     4     Author:     Jasmin Blanchette, TU Muenchen
       
     5     Author:     Martin Desharnais, TU Muenchen
       
     6     Copyright   2012, 2013, 2014
       
     7 
       
     8 Shared fixed point operations on bounded natural functors.
       
     9 *)
       
    10 
       
    11 header {* Shared Fixed Point Operations on Bounded Natural Functors *}
       
    12 
       
    13 theory BNF_Fixpoint_Base
       
    14 imports BNF_Composition Basic_BNFs
       
    15 begin
       
    16 
       
    17 lemma False_imp_eq_True: "(False \<Longrightarrow> Q) \<equiv> Trueprop True"
       
    18   by default simp_all
       
    19 
       
    20 lemma conj_imp_eq_imp_imp: "(P \<and> Q \<Longrightarrow> PROP R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> PROP R)"
       
    21   by default simp_all
       
    22 
       
    23 lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
       
    24 by auto
       
    25 
       
    26 lemma predicate2D_conj: "P \<le> Q \<and> R \<Longrightarrow> P x y \<Longrightarrow> R \<and> Q x y"
       
    27   by auto
       
    28 
       
    29 lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
       
    30 by blast
       
    31 
       
    32 lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f"
       
    33 by (cases u) (hypsubst, rule unit.case)
       
    34 
       
    35 lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
       
    36 by simp
       
    37 
       
    38 lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
       
    39 by simp
       
    40 
       
    41 lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
       
    42 unfolding comp_def fun_eq_iff by simp
       
    43 
       
    44 lemma o_bij:
       
    45   assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
       
    46   shows "bij f"
       
    47 unfolding bij_def inj_on_def surj_def proof safe
       
    48   fix a1 a2 assume "f a1 = f a2"
       
    49   hence "g ( f a1) = g (f a2)" by simp
       
    50   thus "a1 = a2" using gf unfolding fun_eq_iff by simp
       
    51 next
       
    52   fix b
       
    53   have "b = f (g b)"
       
    54   using fg unfolding fun_eq_iff by simp
       
    55   thus "EX a. b = f a" by blast
       
    56 qed
       
    57 
       
    58 lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
       
    59 
       
    60 lemma case_sum_step:
       
    61 "case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p"
       
    62 "case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p"
       
    63 by auto
       
    64 
       
    65 lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
       
    66 by blast
       
    67 
       
    68 lemma type_copy_obj_one_point_absE:
       
    69   assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P
       
    70   using type_definition.Rep_inverse[OF assms(1)]
       
    71   by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp
       
    72 
       
    73 lemma obj_sumE_f:
       
    74   assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P"
       
    75   shows "\<forall>x. s = f x \<longrightarrow> P"
       
    76 proof
       
    77   fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto
       
    78 qed
       
    79 
       
    80 lemma case_sum_if:
       
    81 "case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)"
       
    82 by simp
       
    83 
       
    84 lemma prod_set_simps:
       
    85 "fsts (x, y) = {x}"
       
    86 "snds (x, y) = {y}"
       
    87 unfolding fsts_def snds_def by simp+
       
    88 
       
    89 lemma sum_set_simps:
       
    90 "setl (Inl x) = {x}"
       
    91 "setl (Inr x) = {}"
       
    92 "setr (Inl x) = {}"
       
    93 "setr (Inr x) = {x}"
       
    94 unfolding sum_set_defs by simp+
       
    95 
       
    96 lemma Inl_Inr_False: "(Inl x = Inr y) = False"
       
    97   by simp
       
    98 
       
    99 lemma Inr_Inl_False: "(Inr x = Inl y) = False"
       
   100   by simp
       
   101 
       
   102 lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
       
   103 by blast
       
   104 
       
   105 lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r"
       
   106   unfolding comp_def fun_eq_iff by auto
       
   107 
       
   108 lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2"
       
   109   unfolding comp_def fun_eq_iff by auto
       
   110 
       
   111 lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h"
       
   112   unfolding comp_def fun_eq_iff by auto
       
   113 
       
   114 lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r"
       
   115   unfolding comp_def fun_eq_iff by auto
       
   116 
       
   117 lemma convol_o: "\<langle>f, g\<rangle> \<circ> h = \<langle>f \<circ> h, g \<circ> h\<rangle>"
       
   118   unfolding convol_def by auto
       
   119 
       
   120 lemma map_prod_o_convol: "map_prod h1 h2 \<circ> \<langle>f, g\<rangle> = \<langle>h1 \<circ> f, h2 \<circ> g\<rangle>"
       
   121   unfolding convol_def by auto
       
   122 
       
   123 lemma map_prod_o_convol_id: "(map_prod f id \<circ> \<langle>id, g\<rangle>) x = \<langle>id \<circ> f, g\<rangle> x"
       
   124   unfolding map_prod_o_convol id_comp comp_id ..
       
   125 
       
   126 lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)"
       
   127   unfolding comp_def by (auto split: sum.splits)
       
   128 
       
   129 lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)"
       
   130   unfolding comp_def by (auto split: sum.splits)
       
   131 
       
   132 lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x"
       
   133   unfolding case_sum_o_map_sum id_comp comp_id ..
       
   134 
       
   135 lemma rel_fun_def_butlast:
       
   136   "rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))"
       
   137   unfolding rel_fun_def ..
       
   138 
       
   139 lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
       
   140   by auto
       
   141 
       
   142 lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
       
   143   by auto
       
   144 
       
   145 lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
       
   146   unfolding Grp_def id_apply by blast
       
   147 
       
   148 lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
       
   149    (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
       
   150   unfolding Grp_def by rule auto
       
   151 
       
   152 lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y"
       
   153   unfolding vimage2p_def by blast
       
   154 
       
   155 lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x"
       
   156   unfolding vimage2p_def by auto
       
   157 
       
   158 lemma
       
   159   assumes "type_definition Rep Abs UNIV"
       
   160   shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id"
       
   161   unfolding fun_eq_iff comp_apply id_apply
       
   162     type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all
       
   163 
       
   164 lemma type_copy_map_comp0_undo:
       
   165   assumes "type_definition Rep Abs UNIV"
       
   166           "type_definition Rep' Abs' UNIV"
       
   167           "type_definition Rep'' Abs'' UNIV"
       
   168   shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M"
       
   169   by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I]
       
   170     type_definition.Abs_inverse[OF assms(1) UNIV_I]
       
   171     type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x])
       
   172 
       
   173 lemma vimage2p_id: "vimage2p id id R = R"
       
   174   unfolding vimage2p_def by auto
       
   175 
       
   176 lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1"
       
   177   unfolding fun_eq_iff vimage2p_def o_apply by simp
       
   178 
       
   179 lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g"
       
   180   by (erule arg_cong)
       
   181 
       
   182 lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X"
       
   183   unfolding inj_on_def by simp
       
   184 
       
   185 lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x"
       
   186   by (case_tac x) simp
       
   187 
       
   188 lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x"
       
   189   by (case_tac x) simp+
       
   190 
       
   191 lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x"
       
   192   by (case_tac x) simp+
       
   193 
       
   194 lemma prod_inj_map: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (map_prod f g)"
       
   195   by (simp add: inj_on_def)
       
   196 
       
   197 lemma eq_ifI: "(P \<longrightarrow> t = u1) \<Longrightarrow> (\<not> P \<longrightarrow> t = u2) \<Longrightarrow> t = (if P then u1 else u2)"
       
   198   by simp
       
   199 
       
   200 ML_file "Tools/BNF/bnf_fp_util.ML"
       
   201 ML_file "Tools/BNF/bnf_fp_def_sugar_tactics.ML"
       
   202 ML_file "Tools/BNF/bnf_lfp_size.ML"
       
   203 ML_file "Tools/BNF/bnf_fp_def_sugar.ML"
       
   204 ML_file "Tools/BNF/bnf_fp_n2m_tactics.ML"
       
   205 ML_file "Tools/BNF/bnf_fp_n2m.ML"
       
   206 ML_file "Tools/BNF/bnf_fp_n2m_sugar.ML"
       
   207 
       
   208 ML_file "Tools/Function/old_size.ML"
       
   209 setup Old_Size.setup
       
   210 
       
   211 lemma size_bool[code]: "size (b\<Colon>bool) = 0"
       
   212   by (cases b) auto
       
   213 
       
   214 lemma size_nat[simp, code]: "size (n\<Colon>nat) = n"
       
   215   by (induct n) simp_all
       
   216 
       
   217 declare prod.size[no_atp]
       
   218 
       
   219 lemma size_sum_o_map: "size_sum g1 g2 \<circ> map_sum f1 f2 = size_sum (g1 \<circ> f1) (g2 \<circ> f2)"
       
   220   by (rule ext) (case_tac x, auto)
       
   221 
       
   222 lemma size_prod_o_map: "size_prod g1 g2 \<circ> map_prod f1 f2 = size_prod (g1 \<circ> f1) (g2 \<circ> f2)"
       
   223   by (rule ext) auto
       
   224 
       
   225 setup {*
       
   226 BNF_LFP_Size.register_size_global @{type_name sum} @{const_name size_sum} @{thms sum.size}
       
   227   @{thms size_sum_o_map}
       
   228 #> BNF_LFP_Size.register_size_global @{type_name prod} @{const_name size_prod} @{thms prod.size}
       
   229   @{thms size_prod_o_map}
       
   230 *}
       
   231 
       
   232 end