src/HOL/Nat.thy
changeset 13449 43c9ec498291
parent 12338 de0f4a63baa5
child 13585 db4005b40cc6
equal deleted inserted replaced
13448:3196f93030bb 13449:43c9ec498291
     4 
     4 
     5 Type "nat" is a linear order, and a datatype; arithmetic operators + -
     5 Type "nat" is a linear order, and a datatype; arithmetic operators + -
     6 and * (for div, mod and dvd, see theory Divides).
     6 and * (for div, mod and dvd, see theory Divides).
     7 *)
     7 *)
     8 
     8 
     9 Nat = NatDef + 
     9 header {* Natural numbers *}
    10 
    10 
    11 (* type "nat" is a wellfounded linear order, and a datatype *)
    11 theory Nat = Wellfounded_Recursion:
       
    12 
       
    13 subsection {* Type @{text ind} *}
       
    14 
       
    15 typedecl ind
       
    16 
       
    17 consts
       
    18   Zero_Rep      :: ind
       
    19   Suc_Rep       :: "ind => ind"
       
    20 
       
    21 axioms
       
    22   -- {* the axiom of infinity in 2 parts *}
       
    23   inj_Suc_Rep:          "inj Suc_Rep"
       
    24   Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep"
       
    25 
       
    26 
       
    27 subsection {* Type nat *}
       
    28 
       
    29 text {* Type definition *}
       
    30 
       
    31 consts
       
    32   Nat :: "ind set"
       
    33 
       
    34 inductive Nat
       
    35 intros
       
    36   Zero_RepI: "Zero_Rep : Nat"
       
    37   Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
       
    38 
       
    39 global
       
    40 
       
    41 typedef (open Nat)
       
    42   nat = "Nat" by (rule exI, rule Nat.Zero_RepI)
       
    43 
       
    44 instance nat :: ord ..
       
    45 instance nat :: zero ..
       
    46 instance nat :: one ..
       
    47 
       
    48 
       
    49 text {* Abstract constants and syntax *}
       
    50 
       
    51 consts
       
    52   Suc :: "nat => nat"
       
    53   pred_nat :: "(nat * nat) set"
       
    54 
       
    55 local
       
    56 
       
    57 defs
       
    58   Zero_nat_def: "0 == Abs_Nat Zero_Rep"
       
    59   Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
       
    60   One_nat_def [simp]: "1 == Suc 0"
       
    61 
       
    62   -- {* nat operations *}
       
    63   pred_nat_def: "pred_nat == {(m, n). n = Suc m}"
       
    64 
       
    65   less_def: "m < n == (m, n) : trancl pred_nat"
       
    66 
       
    67   le_def: "m <= (n::nat) == ~ (n < m)"
       
    68 
       
    69 
       
    70 text {* Induction *}
       
    71 
       
    72 theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
       
    73   apply (unfold Zero_nat_def Suc_def)
       
    74   apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
       
    75   apply (erule Rep_Nat [THEN Nat.induct])
       
    76   apply (rules elim: Abs_Nat_inverse [THEN subst])
       
    77   done
       
    78 
       
    79 
       
    80 text {* Isomorphisms: @{text Abs_Nat} and @{text Rep_Nat} *}
       
    81 
       
    82 lemma inj_Rep_Nat: "inj Rep_Nat"
       
    83   apply (rule inj_inverseI)
       
    84   apply (rule Rep_Nat_inverse)
       
    85   done
       
    86 
       
    87 lemma inj_on_Abs_Nat: "inj_on Abs_Nat Nat"
       
    88   apply (rule inj_on_inverseI)
       
    89   apply (erule Abs_Nat_inverse)
       
    90   done
       
    91 
       
    92 text {* Distinctness of constructors *}
       
    93 
       
    94 lemma Suc_not_Zero [iff]: "Suc m ~= 0"
       
    95   apply (unfold Zero_nat_def Suc_def)
       
    96   apply (rule inj_on_Abs_Nat [THEN inj_on_contraD])
       
    97   apply (rule Suc_Rep_not_Zero_Rep)
       
    98   apply (rule Rep_Nat Nat.Suc_RepI Nat.Zero_RepI)+
       
    99   done
       
   100 
       
   101 lemma Zero_not_Suc [iff]: "0 ~= Suc m"
       
   102   by (rule not_sym, rule Suc_not_Zero not_sym)
       
   103 
       
   104 lemma Suc_neq_Zero: "Suc m = 0 ==> R"
       
   105   by (rule notE, rule Suc_not_Zero)
       
   106 
       
   107 lemma Zero_neq_Suc: "0 = Suc m ==> R"
       
   108   by (rule Suc_neq_Zero, erule sym)
       
   109 
       
   110 text {* Injectiveness of @{term Suc} *}
       
   111 
       
   112 lemma inj_Suc: "inj Suc"
       
   113   apply (unfold Suc_def)
       
   114   apply (rule injI)
       
   115   apply (drule inj_on_Abs_Nat [THEN inj_onD])
       
   116   apply (rule Rep_Nat Nat.Suc_RepI)+
       
   117   apply (drule inj_Suc_Rep [THEN injD])
       
   118   apply (erule inj_Rep_Nat [THEN injD])
       
   119   done
       
   120 
       
   121 lemma Suc_inject: "Suc x = Suc y ==> x = y"
       
   122   by (rule inj_Suc [THEN injD])
       
   123 
       
   124 lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"
       
   125   apply (rule iffI)
       
   126   apply (erule Suc_inject)
       
   127   apply (erule arg_cong)
       
   128   done
       
   129 
       
   130 lemma nat_not_singleton: "(ALL x. x = (0::nat)) = False"
       
   131   by auto
       
   132 
       
   133 text {* @{typ nat} is a datatype *}
    12 
   134 
    13 rep_datatype nat
   135 rep_datatype nat
    14   distinct Suc_not_Zero, Zero_not_Suc
   136   distinct  Suc_not_Zero Zero_not_Suc
    15   inject   Suc_Suc_eq
   137   inject    Suc_Suc_eq
    16   induct   nat_induct
   138   induction nat_induct
    17 
   139 
    18 instance nat :: order (le_refl,le_trans,le_anti_sym,nat_less_le)
   140 lemma n_not_Suc_n: "n ~= Suc n"
    19 instance nat :: linorder (nat_le_linear)
   141   by (induct n) simp_all
    20 instance nat :: wellorder (wf_less)
   142 
       
   143 lemma Suc_n_not_n: "Suc t ~= t"
       
   144   by (rule not_sym, rule n_not_Suc_n)
       
   145 
       
   146 text {* A special form of induction for reasoning
       
   147   about @{term "m < n"} and @{term "m - n"} *}
       
   148 
       
   149 theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
       
   150     (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
       
   151   apply (rule_tac x = "m" in spec)
       
   152   apply (induct_tac n)
       
   153   prefer 2
       
   154   apply (rule allI)
       
   155   apply (induct_tac x)
       
   156   apply rules+
       
   157   done
       
   158 
       
   159 subsection {* Basic properties of "less than" *}
       
   160 
       
   161 lemma wf_pred_nat: "wf pred_nat"
       
   162   apply (unfold wf_def pred_nat_def)
       
   163   apply clarify
       
   164   apply (induct_tac x)
       
   165   apply blast+
       
   166   done
       
   167 
       
   168 lemma wf_less: "wf {(x, y::nat). x < y}"
       
   169   apply (unfold less_def)
       
   170   apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset])
       
   171   apply blast
       
   172   done
       
   173 
       
   174 lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"
       
   175   apply (unfold less_def)
       
   176   apply (rule refl)
       
   177   done
       
   178 
       
   179 subsubsection {* Introduction properties *}
       
   180 
       
   181 lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"
       
   182   apply (unfold less_def)
       
   183   apply (rule trans_trancl [THEN transD])
       
   184   apply assumption+
       
   185   done
       
   186 
       
   187 lemma lessI [iff]: "n < Suc n"
       
   188   apply (unfold less_def pred_nat_def)
       
   189   apply (simp add: r_into_trancl)
       
   190   done
       
   191 
       
   192 lemma less_SucI: "i < j ==> i < Suc j"
       
   193   apply (rule less_trans)
       
   194   apply assumption
       
   195   apply (rule lessI)
       
   196   done
       
   197 
       
   198 lemma zero_less_Suc [iff]: "0 < Suc n"
       
   199   apply (induct n)
       
   200   apply (rule lessI)
       
   201   apply (erule less_trans)
       
   202   apply (rule lessI)
       
   203   done
       
   204 
       
   205 subsubsection {* Elimination properties *}
       
   206 
       
   207 lemma less_not_sym: "n < m ==> ~ m < (n::nat)"
       
   208   apply (unfold less_def)
       
   209   apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])
       
   210   done
       
   211 
       
   212 lemma less_asym:
       
   213   assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P
       
   214   apply (rule contrapos_np)
       
   215   apply (rule less_not_sym)
       
   216   apply (rule h1)
       
   217   apply (erule h2)
       
   218   done
       
   219 
       
   220 lemma less_not_refl: "~ n < (n::nat)"
       
   221   apply (unfold less_def)
       
   222   apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])
       
   223   done
       
   224 
       
   225 lemma less_irrefl [elim!]: "(n::nat) < n ==> R"
       
   226   by (rule notE, rule less_not_refl)
       
   227 
       
   228 lemma less_not_refl2: "n < m ==> m ~= (n::nat)" by blast
       
   229 
       
   230 lemma less_not_refl3: "(s::nat) < t ==> s ~= t"
       
   231   by (rule not_sym, rule less_not_refl2)
       
   232 
       
   233 lemma lessE:
       
   234   assumes major: "i < k"
       
   235   and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
       
   236   shows P
       
   237   apply (rule major [unfolded less_def pred_nat_def, THEN tranclE])
       
   238   apply simp_all
       
   239   apply (erule p1)
       
   240   apply (rule p2)
       
   241   apply (simp add: less_def pred_nat_def)
       
   242   apply assumption
       
   243   done
       
   244 
       
   245 lemma not_less0 [iff]: "~ n < (0::nat)"
       
   246   by (blast elim: lessE)
       
   247 
       
   248 lemma less_zeroE: "(n::nat) < 0 ==> R"
       
   249   by (rule notE, rule not_less0)
       
   250 
       
   251 lemma less_SucE: assumes major: "m < Suc n"
       
   252   and less: "m < n ==> P" and eq: "m = n ==> P" shows P
       
   253   apply (rule major [THEN lessE])
       
   254   apply (rule eq)
       
   255   apply blast
       
   256   apply (rule less)
       
   257   apply blast
       
   258   done
       
   259 
       
   260 lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
       
   261   by (blast elim!: less_SucE intro: less_trans)
       
   262 
       
   263 lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
       
   264   by (simp add: less_Suc_eq)
       
   265 
       
   266 lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
       
   267   by (simp add: less_Suc_eq)
       
   268 
       
   269 lemma Suc_mono: "m < n ==> Suc m < Suc n"
       
   270   by (induct n) (fast elim: less_trans lessE)+
       
   271 
       
   272 text {* "Less than" is a linear ordering *}
       
   273 lemma less_linear: "m < n | m = n | n < (m::nat)"
       
   274   apply (induct_tac m)
       
   275   apply (induct_tac n)
       
   276   apply (rule refl [THEN disjI1, THEN disjI2])
       
   277   apply (rule zero_less_Suc [THEN disjI1])
       
   278   apply (blast intro: Suc_mono less_SucI elim: lessE)
       
   279   done
       
   280 
       
   281 lemma nat_neq_iff: "((m::nat) ~= n) = (m < n | n < m)"
       
   282   using less_linear by blast
       
   283 
       
   284 lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
       
   285   and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
       
   286   shows "P n m"
       
   287   apply (rule less_linear [THEN disjE])
       
   288   apply (erule_tac [2] disjE)
       
   289   apply (erule lessCase)
       
   290   apply (erule sym [THEN eqCase])
       
   291   apply (erule major)
       
   292   done
       
   293 
       
   294 
       
   295 subsubsection {* Inductive (?) properties *}
       
   296 
       
   297 lemma Suc_lessI: "m < n ==> Suc m ~= n ==> Suc m < n"
       
   298   apply (simp add: nat_neq_iff)
       
   299   apply (blast elim!: less_irrefl less_SucE elim: less_asym)
       
   300   done
       
   301 
       
   302 lemma Suc_lessD: "Suc m < n ==> m < n"
       
   303   apply (induct n)
       
   304   apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+
       
   305   done
       
   306 
       
   307 lemma Suc_lessE: assumes major: "Suc i < k"
       
   308   and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
       
   309   apply (rule major [THEN lessE])
       
   310   apply (erule lessI [THEN minor])
       
   311   apply (erule Suc_lessD [THEN minor])
       
   312   apply assumption
       
   313   done
       
   314 
       
   315 lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
       
   316   by (blast elim: lessE dest: Suc_lessD)
       
   317 
       
   318 lemma Suc_less_eq [iff]: "(Suc m < Suc n) = (m < n)"
       
   319   apply (rule iffI)
       
   320   apply (erule Suc_less_SucD)
       
   321   apply (erule Suc_mono)
       
   322   done
       
   323 
       
   324 lemma less_trans_Suc:
       
   325   assumes le: "i < j" shows "j < k ==> Suc i < k"
       
   326   apply (induct k)
       
   327   apply simp_all
       
   328   apply (insert le)
       
   329   apply (simp add: less_Suc_eq)
       
   330   apply (blast dest: Suc_lessD)
       
   331   done
       
   332 
       
   333 text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
       
   334 lemma not_less_eq: "(~ m < n) = (n < Suc m)"
       
   335   apply (rule_tac m = "m" and n = "n" in diff_induct)
       
   336   apply simp_all
       
   337   done
       
   338 
       
   339 text {* Complete induction, aka course-of-values induction *}
       
   340 lemma nat_less_induct:
       
   341   assumes prem: "!!n. ALL m::nat. m < n --> P m ==> P n" shows "P n"
       
   342   apply (rule_tac a=n in wf_induct)
       
   343   apply (rule wf_pred_nat [THEN wf_trancl])
       
   344   apply (rule prem)
       
   345   apply (unfold less_def)
       
   346   apply assumption
       
   347   done
       
   348 
       
   349 subsection {* Properties of "less or equal than" *}
       
   350 
       
   351 text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
       
   352 lemma less_Suc_eq_le: "(m < Suc n) = (m <= n)"
       
   353   by (unfold le_def, rule not_less_eq [symmetric])
       
   354 
       
   355 lemma le_imp_less_Suc: "m <= n ==> m < Suc n"
       
   356   by (rule less_Suc_eq_le [THEN iffD2])
       
   357 
       
   358 lemma le0 [iff]: "(0::nat) <= n"
       
   359   by (unfold le_def, rule not_less0)
       
   360 
       
   361 lemma Suc_n_not_le_n: "~ Suc n <= n"
       
   362   by (simp add: le_def)
       
   363 
       
   364 lemma le_0_eq [iff]: "((i::nat) <= 0) = (i = 0)"
       
   365   by (induct i) (simp_all add: le_def)
       
   366 
       
   367 lemma le_Suc_eq: "(m <= Suc n) = (m <= n | m = Suc n)"
       
   368   by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)
       
   369 
       
   370 lemma le_SucE: "m <= Suc n ==> (m <= n ==> R) ==> (m = Suc n ==> R) ==> R"
       
   371   by (drule le_Suc_eq [THEN iffD1], rules+)
       
   372 
       
   373 lemma leI: "~ n < m ==> m <= (n::nat)" by (simp add: le_def)
       
   374 
       
   375 lemma leD: "m <= n ==> ~ n < (m::nat)"
       
   376   by (simp add: le_def)
       
   377 
       
   378 lemmas leE = leD [elim_format]
       
   379 
       
   380 lemma not_less_iff_le: "(~ n < m) = (m <= (n::nat))"
       
   381   by (blast intro: leI elim: leE)
       
   382 
       
   383 lemma not_leE: "~ m <= n ==> n<(m::nat)"
       
   384   by (simp add: le_def)
       
   385 
       
   386 lemma not_le_iff_less: "(~ n <= m) = (m < (n::nat))"
       
   387   by (simp add: le_def)
       
   388 
       
   389 lemma Suc_leI: "m < n ==> Suc(m) <= n"
       
   390   apply (simp add: le_def less_Suc_eq)
       
   391   apply (blast elim!: less_irrefl less_asym)
       
   392   done -- {* formerly called lessD *}
       
   393 
       
   394 lemma Suc_leD: "Suc(m) <= n ==> m <= n"
       
   395   by (simp add: le_def less_Suc_eq)
       
   396 
       
   397 text {* Stronger version of @{text Suc_leD} *}
       
   398 lemma Suc_le_lessD: "Suc m <= n ==> m < n"
       
   399   apply (simp add: le_def less_Suc_eq)
       
   400   using less_linear
       
   401   apply blast
       
   402   done
       
   403 
       
   404 lemma Suc_le_eq: "(Suc m <= n) = (m < n)"
       
   405   by (blast intro: Suc_leI Suc_le_lessD)
       
   406 
       
   407 lemma le_SucI: "m <= n ==> m <= Suc n"
       
   408   by (unfold le_def) (blast dest: Suc_lessD)
       
   409 
       
   410 lemma less_imp_le: "m < n ==> m <= (n::nat)"
       
   411   by (unfold le_def) (blast elim: less_asym)
       
   412 
       
   413 text {* For instance, @{text "(Suc m < Suc n) = (Suc m <= n) = (m < n)"} *}
       
   414 lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq
       
   415 
       
   416 
       
   417 text {* Equivalence of @{term "m <= n"} and @{term "m < n | m = n"} *}
       
   418 
       
   419 lemma le_imp_less_or_eq: "m <= n ==> m < n | m = (n::nat)"
       
   420   apply (unfold le_def)
       
   421   using less_linear
       
   422   apply (blast elim: less_irrefl less_asym)
       
   423   done
       
   424 
       
   425 lemma less_or_eq_imp_le: "m < n | m = n ==> m <= (n::nat)"
       
   426   apply (unfold le_def)
       
   427   using less_linear
       
   428   apply (blast elim!: less_irrefl elim: less_asym)
       
   429   done
       
   430 
       
   431 lemma le_eq_less_or_eq: "(m <= (n::nat)) = (m < n | m=n)"
       
   432   by (rules intro: less_or_eq_imp_le le_imp_less_or_eq)
       
   433 
       
   434 text {* Useful with @{text Blast}. *}
       
   435 lemma eq_imp_le: "(m::nat) = n ==> m <= n"
       
   436   by (rule less_or_eq_imp_le, rule disjI2)
       
   437 
       
   438 lemma le_refl: "n <= (n::nat)"
       
   439   by (simp add: le_eq_less_or_eq)
       
   440 
       
   441 lemma le_less_trans: "[| i <= j; j < k |] ==> i < (k::nat)"
       
   442   by (blast dest!: le_imp_less_or_eq intro: less_trans)
       
   443 
       
   444 lemma less_le_trans: "[| i < j; j <= k |] ==> i < (k::nat)"
       
   445   by (blast dest!: le_imp_less_or_eq intro: less_trans)
       
   446 
       
   447 lemma le_trans: "[| i <= j; j <= k |] ==> i <= (k::nat)"
       
   448   by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
       
   449 
       
   450 lemma le_anti_sym: "[| m <= n; n <= m |] ==> m = (n::nat)"
       
   451   -- {* @{text order_less_irrefl} could make this proof fail *}
       
   452   by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
       
   453 
       
   454 lemma Suc_le_mono [iff]: "(Suc n <= Suc m) = (n <= m)"
       
   455   by (simp add: le_simps)
       
   456 
       
   457 text {* Axiom @{text order_less_le} of class @{text order}: *}
       
   458 lemma nat_less_le: "((m::nat) < n) = (m <= n & m ~= n)"
       
   459   by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)
       
   460 
       
   461 lemma le_neq_implies_less: "(m::nat) <= n ==> m ~= n ==> m < n"
       
   462   by (rule iffD2, rule nat_less_le, rule conjI)
       
   463 
       
   464 text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
       
   465 lemma nat_le_linear: "(m::nat) <= n | n <= m"
       
   466   apply (simp add: le_eq_less_or_eq)
       
   467   using less_linear
       
   468   apply blast
       
   469   done
       
   470 
       
   471 lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
       
   472   by (blast elim!: less_SucE)
       
   473 
       
   474 
       
   475 text {*
       
   476   Rewrite @{term "n < Suc m"} to @{term "n = m"}
       
   477   if @{term "~ n < m"} or @{term "m <= n"} hold.
       
   478   Not suitable as default simprules because they often lead to looping
       
   479 *}
       
   480 lemma le_less_Suc_eq: "m <= n ==> (n < Suc m) = (n = m)"
       
   481   by (rule not_less_less_Suc_eq, rule leD)
       
   482 
       
   483 lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
       
   484 
       
   485 
       
   486 text {*
       
   487   Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. 
       
   488   No longer added as simprules (they loop) 
       
   489   but via @{text reorient_simproc} in Bin
       
   490 *}
       
   491 
       
   492 text {* Polymorphic, not just for @{typ nat} *}
       
   493 lemma zero_reorient: "(0 = x) = (x = 0)"
       
   494   by auto
       
   495 
       
   496 lemma one_reorient: "(1 = x) = (x = 1)"
       
   497   by auto
       
   498 
       
   499 text {* Type {@typ nat} is a wellfounded linear order *}
       
   500 
       
   501 instance nat :: order by (intro_classes,
       
   502   (assumption | rule le_refl le_trans le_anti_sym nat_less_le)+)
       
   503 instance nat :: linorder by (intro_classes, rule nat_le_linear)
       
   504 instance nat :: wellorder by (intro_classes, rule wf_less)
       
   505 
       
   506 subsection {* Arithmetic operators *}
    21 
   507 
    22 axclass power < type
   508 axclass power < type
    23 
   509 
    24 consts
   510 consts
    25   power :: ['a::power, nat] => 'a            (infixr "^" 80)
   511   power :: "('a::power) => nat => 'a"            (infixr "^" 80)
    26 
   512 
    27 
   513 
    28 (* arithmetic operators + - and * *)
   514 text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
    29 
   515 
    30 instance
   516 instance nat :: plus ..
    31   nat :: {plus, minus, times, power}
   517 instance nat :: minus ..
    32 
   518 instance nat :: times ..
    33 (* size of a datatype value; overloaded *)
   519 instance nat :: power ..
    34 consts size :: 'a => nat
   520 
       
   521 text {* size of a datatype value; overloaded *}
       
   522 consts size :: "'a => nat"
    35 
   523 
    36 primrec
   524 primrec
    37   add_0    "0 + n = n"
   525   add_0:    "0 + n = n"
    38   add_Suc  "Suc m + n = Suc(m + n)"
   526   add_Suc:  "Suc m + n = Suc (m + n)"
    39 
   527 
    40 primrec
   528 primrec
    41   diff_0   "m - 0 = m"
   529   diff_0:   "m - 0 = m"
    42   diff_Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
   530   diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
    43 
   531 
    44 primrec
   532 primrec
    45   mult_0   "0 * n = 0"
   533   mult_0:   "0 * n = 0"
    46   mult_Suc "Suc m * n = n + (m * n)"
   534   mult_Suc: "Suc m * n = n + (m * n)"
       
   535 
       
   536 text {* These 2 rules ease the use of primitive recursion. NOTE USE OF @{text "=="} *}
       
   537 lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
       
   538   by simp
       
   539 
       
   540 lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
       
   541   by simp
       
   542 
       
   543 lemma not0_implies_Suc: "n ~= 0 ==> EX m. n = Suc m"
       
   544   by (case_tac n) simp_all
       
   545 
       
   546 lemma gr_implies_not0: "!!n::nat. m<n ==> n ~= 0"
       
   547   by (case_tac n) simp_all
       
   548 
       
   549 lemma neq0_conv [iff]: "!!n::nat. (n ~= 0) = (0 < n)"
       
   550   by (case_tac n) simp_all
       
   551 
       
   552 text {* This theorem is useful with @{text blast} *}
       
   553 lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
       
   554   by (rule iffD1, rule neq0_conv, rules)
       
   555 
       
   556 lemma gr0_conv_Suc: "(0 < n) = (EX m. n = Suc m)"
       
   557   by (fast intro: not0_implies_Suc)
       
   558 
       
   559 lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
       
   560   apply (rule iffI)
       
   561   apply (rule ccontr)
       
   562   apply simp_all
       
   563   done
       
   564 
       
   565 lemma Suc_le_D: "(Suc n <= m') ==> (? m. m' = Suc m)"
       
   566   by (induct m') simp_all
       
   567 
       
   568 text {* Useful in certain inductive arguments *}
       
   569 lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (EX j. m = Suc j & j < n))"
       
   570   by (case_tac m) simp_all
       
   571 
       
   572 lemma nat_induct2: "P 0 ==> P (Suc 0) ==> (!!k. P k ==> P (Suc (Suc k))) ==> P n"
       
   573   apply (rule nat_less_induct)
       
   574   apply (case_tac n)
       
   575   apply (case_tac [2] nat)
       
   576   apply (blast intro: less_trans)+
       
   577   done
       
   578 
       
   579 subsection {* @{text LEAST} theorems for type @{typ nat} by specialization *}
       
   580 
       
   581 lemmas LeastI = wellorder_LeastI
       
   582 lemmas Least_le = wellorder_Least_le
       
   583 lemmas not_less_Least = wellorder_not_less_Least
       
   584 
       
   585 lemma Least_Suc: "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
       
   586   apply (case_tac "n")
       
   587   apply auto
       
   588   apply (frule LeastI)
       
   589   apply (drule_tac P = "%x. P (Suc x) " in LeastI)
       
   590   apply (subgoal_tac " (LEAST x. P x) <= Suc (LEAST x. P (Suc x))")
       
   591   apply (erule_tac [2] Least_le)
       
   592   apply (case_tac "LEAST x. P x")
       
   593   apply auto
       
   594   apply (drule_tac P = "%x. P (Suc x) " in Least_le)
       
   595   apply (blast intro: order_antisym)
       
   596   done
       
   597 
       
   598 lemma Least_Suc2: "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
       
   599   apply (erule (1) Least_Suc [THEN ssubst])
       
   600   apply simp
       
   601   done
       
   602 
       
   603 
       
   604 subsection {* @{term min} and @{term max} *}
       
   605 
       
   606 lemma min_0L [simp]: "min 0 n = (0::nat)"
       
   607   by (rule min_leastL) simp
       
   608 
       
   609 lemma min_0R [simp]: "min n 0 = (0::nat)"
       
   610   by (rule min_leastR) simp
       
   611 
       
   612 lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
       
   613   by (simp add: min_of_mono)
       
   614 
       
   615 lemma max_0L [simp]: "max 0 n = (n::nat)"
       
   616   by (rule max_leastL) simp
       
   617 
       
   618 lemma max_0R [simp]: "max n 0 = (n::nat)"
       
   619   by (rule max_leastR) simp
       
   620 
       
   621 lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
       
   622   by (simp add: max_of_mono)
       
   623 
       
   624 
       
   625 subsection {* Basic rewrite rules for the arithmetic operators *}
       
   626 
       
   627 text {* Difference *}
       
   628 
       
   629 lemma diff_0_eq_0 [simp]: "0 - n = (0::nat)"
       
   630   by (induct_tac n) simp_all
       
   631 
       
   632 lemma diff_Suc_Suc [simp]: "Suc(m) - Suc(n) = m - n"
       
   633   by (induct_tac n) simp_all
       
   634 
       
   635 
       
   636 text {*
       
   637   Could be (and is, below) generalized in various ways
       
   638   However, none of the generalizations are currently in the simpset,
       
   639   and I dread to think what happens if I put them in
       
   640 *}
       
   641 lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"
       
   642   by (simp split add: nat.split)
       
   643 
       
   644 declare diff_Suc [simp del]
       
   645 
       
   646 
       
   647 subsection {* Addition *}
       
   648 
       
   649 lemma add_0_right [simp]: "m + 0 = (m::nat)"
       
   650   by (induct m) simp_all
       
   651 
       
   652 lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
       
   653   by (induct m) simp_all
       
   654 
       
   655 
       
   656 text {* Associative law for addition *}
       
   657 lemma add_assoc: "(m + n) + k = m + ((n + k)::nat)"
       
   658   by (induct m) simp_all
       
   659 
       
   660 text {* Commutative law for addition *}
       
   661 lemma add_commute: "m + n = n + (m::nat)"
       
   662   by (induct m) simp_all
       
   663 
       
   664 lemma add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
       
   665   apply (rule mk_left_commute [of "op +"])
       
   666   apply (rule add_assoc)
       
   667   apply (rule add_commute)
       
   668   done
       
   669 
       
   670 text {* Addition is an AC-operator *}
       
   671 lemmas add_ac = add_assoc add_commute add_left_commute
       
   672 
       
   673 lemma add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
       
   674   by (induct k) simp_all
       
   675 
       
   676 lemma add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
       
   677   by (induct k) simp_all
       
   678 
       
   679 lemma add_left_cancel_le [simp]: "(k + m <= k + n) = (m<=(n::nat))"
       
   680   by (induct k) simp_all
       
   681 
       
   682 lemma add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
       
   683   by (induct k) simp_all
       
   684 
       
   685 text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
       
   686 
       
   687 lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)"
       
   688   by (case_tac m) simp_all
       
   689 
       
   690 lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
       
   691   by (case_tac m) simp_all
       
   692 
       
   693 lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
       
   694   by (rule trans, rule eq_commute, rule add_is_1)
       
   695 
       
   696 lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"
       
   697   by (simp del: neq0_conv add: neq0_conv [symmetric])
       
   698 
       
   699 lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"
       
   700   apply (drule add_0_right [THEN ssubst])
       
   701   apply (simp add: add_assoc del: add_0_right)
       
   702   done
       
   703 
       
   704 subsection {* Additional theorems about "less than" *}
       
   705 
       
   706 text {* Deleted @{text less_natE}; instead use @{text "less_imp_Suc_add RS exE"} *}
       
   707 lemma less_imp_Suc_add: "m < n ==> (EX k. n = Suc (m + k))"
       
   708   apply (induct n)
       
   709   apply (simp_all add: order_le_less)
       
   710   apply (blast elim!: less_SucE intro!: add_0_right [symmetric] add_Suc_right [symmetric])
       
   711   done
       
   712 
       
   713 lemma le_add2: "n <= ((m + n)::nat)"
       
   714   apply (induct m)
       
   715   apply simp_all
       
   716   apply (erule le_SucI)
       
   717   done
       
   718 
       
   719 lemma le_add1: "n <= ((n + m)::nat)"
       
   720   apply (simp add: add_ac)
       
   721   apply (rule le_add2)
       
   722   done
       
   723 
       
   724 lemma less_add_Suc1: "i < Suc (i + m)"
       
   725   by (rule le_less_trans, rule le_add1, rule lessI)
       
   726 
       
   727 lemma less_add_Suc2: "i < Suc (m + i)"
       
   728   by (rule le_less_trans, rule le_add2, rule lessI)
       
   729 
       
   730 lemma less_iff_Suc_add: "(m < n) = (EX k. n = Suc (m + k))"
       
   731   by (rules intro!: less_add_Suc1 less_imp_Suc_add)
       
   732 
       
   733 
       
   734 lemma trans_le_add1: "(i::nat) <= j ==> i <= j + m"
       
   735   by (rule le_trans, assumption, rule le_add1)
       
   736 
       
   737 lemma trans_le_add2: "(i::nat) <= j ==> i <= m + j"
       
   738   by (rule le_trans, assumption, rule le_add2)
       
   739 
       
   740 lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
       
   741   by (rule less_le_trans, assumption, rule le_add1)
       
   742 
       
   743 lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
       
   744   by (rule less_le_trans, assumption, rule le_add2)
       
   745 
       
   746 lemma add_lessD1: "i + j < (k::nat) ==> i < k"
       
   747   apply (induct j)
       
   748   apply simp_all
       
   749   apply (blast dest: Suc_lessD)
       
   750   done
       
   751 
       
   752 lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
       
   753   apply (rule notI)
       
   754   apply (erule add_lessD1 [THEN less_irrefl])
       
   755   done
       
   756 
       
   757 lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
       
   758   by (simp add: add_commute not_add_less1)
       
   759 
       
   760 lemma add_leD1: "m + k <= n ==> m <= (n::nat)"
       
   761   by (induct k) (simp_all add: le_simps)
       
   762 
       
   763 lemma add_leD2: "m + k <= n ==> k <= (n::nat)"
       
   764   apply (simp add: add_commute)
       
   765   apply (erule add_leD1)
       
   766   done
       
   767 
       
   768 lemma add_leE: "(m::nat) + k <= n ==> (m <= n ==> k <= n ==> R) ==> R"
       
   769   by (blast dest: add_leD1 add_leD2)
       
   770 
       
   771 text {* needs @{text "!!k"} for @{text add_ac} to work *}
       
   772 lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
       
   773   by (force simp del: add_Suc_right
       
   774     simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
       
   775 
       
   776 
       
   777 subsection {* Monotonicity of Addition *}
       
   778 
       
   779 text {* strict, in 1st argument *}
       
   780 lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
       
   781   by (induct k) simp_all
       
   782 
       
   783 text {* strict, in both arguments *}
       
   784 lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
       
   785   apply (rule add_less_mono1 [THEN less_trans])
       
   786   apply assumption+
       
   787   apply (induct_tac j)
       
   788   apply simp_all
       
   789   done
       
   790 
       
   791 text {* A [clumsy] way of lifting @{text "<"}
       
   792   monotonicity to @{text "<="} monotonicity *}
       
   793 lemma less_mono_imp_le_mono:
       
   794   assumes lt_mono: "!!i j::nat. i < j ==> f i < f j"
       
   795   and le: "i <= j" shows "f i <= ((f j)::nat)" using le
       
   796   apply (simp add: order_le_less)
       
   797   apply (blast intro!: lt_mono)
       
   798   done
       
   799 
       
   800 text {* non-strict, in 1st argument *}
       
   801 lemma add_le_mono1: "i <= j ==> i + k <= j + (k::nat)"
       
   802   apply (rule_tac f = "%j. j + k" in less_mono_imp_le_mono)
       
   803   apply (erule add_less_mono1)
       
   804   apply assumption
       
   805   done
       
   806 
       
   807 text {* non-strict, in both arguments *}
       
   808 lemma add_le_mono: "[| i <= j;  k <= l |] ==> i + k <= j + (l::nat)"
       
   809   apply (erule add_le_mono1 [THEN le_trans])
       
   810   apply (simp add: add_commute)
       
   811   done
       
   812 
       
   813 
       
   814 subsection {* Multiplication *}
       
   815 
       
   816 text {* right annihilation in product *}
       
   817 lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
       
   818   by (induct m) simp_all
       
   819 
       
   820 text {* right successor law for multiplication *}
       
   821 lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
       
   822   by (induct m) (simp_all add: add_ac)
       
   823 
       
   824 lemma mult_1: "(1::nat) * n = n" by simp
       
   825 
       
   826 lemma mult_1_right: "n * (1::nat) = n" by simp
       
   827 
       
   828 text {* Commutative law for multiplication *}
       
   829 lemma mult_commute: "m * n = n * (m::nat)"
       
   830   by (induct m) simp_all
       
   831 
       
   832 text {* addition distributes over multiplication *}
       
   833 lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
       
   834   by (induct m) (simp_all add: add_ac)
       
   835 
       
   836 lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
       
   837   by (induct m) (simp_all add: add_ac)
       
   838 
       
   839 text {* Associative law for multiplication *}
       
   840 lemma mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
       
   841   by (induct m) (simp_all add: add_mult_distrib)
       
   842 
       
   843 lemma mult_left_commute: "x * (y * z) = y * ((x * z)::nat)"
       
   844   apply (rule mk_left_commute [of "op *"])
       
   845   apply (rule mult_assoc)
       
   846   apply (rule mult_commute)
       
   847   done
       
   848 
       
   849 lemmas mult_ac = mult_assoc mult_commute mult_left_commute
       
   850 
       
   851 lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
       
   852   apply (induct_tac m)
       
   853   apply (induct_tac [2] n)
       
   854   apply simp_all
       
   855   done
       
   856 
       
   857 
       
   858 subsection {* Difference *}
       
   859 
       
   860 lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"
       
   861   by (induct m) simp_all
       
   862 
       
   863 text {* Addition is the inverse of subtraction:
       
   864   if @{term "n <= m"} then @{term "n + (m - n) = m"}. *}
       
   865 lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
       
   866   by (induct m n rule: diff_induct) simp_all
       
   867 
       
   868 lemma le_add_diff_inverse [simp]: "n <= m ==> n + (m - n) = (m::nat)"
       
   869   by (simp add: add_diff_inverse not_less_iff_le)
       
   870 
       
   871 lemma le_add_diff_inverse2 [simp]: "n <= m ==> (m - n) + n = (m::nat)"
       
   872   by (simp add: le_add_diff_inverse add_commute)
       
   873 
       
   874 
       
   875 subsection {* More results about difference *}
       
   876 
       
   877 lemma Suc_diff_le: "n <= m ==> Suc m - n = Suc (m - n)"
       
   878   by (induct m n rule: diff_induct) simp_all
       
   879 
       
   880 lemma diff_less_Suc: "m - n < Suc m"
       
   881   apply (induct m n rule: diff_induct)
       
   882   apply (erule_tac [3] less_SucE)
       
   883   apply (simp_all add: less_Suc_eq)
       
   884   done
       
   885 
       
   886 lemma diff_le_self [simp]: "m - n <= (m::nat)"
       
   887   by (induct m n rule: diff_induct) (simp_all add: le_SucI)
       
   888 
       
   889 lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
       
   890   by (rule le_less_trans, rule diff_le_self)
       
   891 
       
   892 lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
       
   893   by (induct i j rule: diff_induct) simp_all
       
   894 
       
   895 lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
       
   896   by (simp add: diff_diff_left)
       
   897 
       
   898 lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
       
   899   apply (case_tac "n")
       
   900   apply safe
       
   901   apply (simp add: le_simps)
       
   902   done
       
   903 
       
   904 text {* This and the next few suggested by Florian Kammueller *}
       
   905 lemma diff_commute: "(i::nat) - j - k = i - k - j"
       
   906   by (simp add: diff_diff_left add_commute)
       
   907 
       
   908 lemma diff_add_assoc: "k <= (j::nat) ==> (i + j) - k = i + (j - k)"
       
   909   by (induct j k rule: diff_induct) simp_all
       
   910 
       
   911 lemma diff_add_assoc2: "k <= (j::nat) ==> (j + i) - k = (j - k) + i"
       
   912   by (simp add: add_commute diff_add_assoc)
       
   913 
       
   914 lemma diff_add_inverse: "(n + m) - n = (m::nat)"
       
   915   by (induct n) simp_all
       
   916 
       
   917 lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
       
   918   by (simp add: diff_add_assoc)
       
   919 
       
   920 lemma le_imp_diff_is_add: "i <= (j::nat) ==> (j - i = k) = (j = k + i)"
       
   921   apply safe
       
   922   apply (simp_all add: diff_add_inverse2)
       
   923   done
       
   924 
       
   925 lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m <= n)"
       
   926   by (induct m n rule: diff_induct) simp_all
       
   927 
       
   928 lemma diff_is_0_eq' [simp]: "m <= n ==> (m::nat) - n = 0"
       
   929   by (rule iffD2, rule diff_is_0_eq)
       
   930 
       
   931 lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
       
   932   by (induct m n rule: diff_induct) simp_all
       
   933 
       
   934 lemma less_imp_add_positive: "i < j  ==> EX k::nat. 0 < k & i + k = j"
       
   935   apply (rule_tac x = "j - i" in exI)
       
   936   apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym)
       
   937   done
       
   938 
       
   939 lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
       
   940   apply (induct k i rule: diff_induct)
       
   941   apply (simp_all (no_asm))
       
   942   apply rules
       
   943   done
       
   944 
       
   945 lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
       
   946   apply (rule diff_self_eq_0 [THEN subst])
       
   947   apply (rule zero_induct_lemma)
       
   948   apply rules+
       
   949   done
       
   950 
       
   951 lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
       
   952   by (induct k) simp_all
       
   953 
       
   954 lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
       
   955   by (simp add: diff_cancel add_commute)
       
   956 
       
   957 lemma diff_add_0: "n - (n + m) = (0::nat)"
       
   958   by (induct n) simp_all
       
   959 
       
   960 
       
   961 text {* Difference distributes over multiplication *}
       
   962 
       
   963 lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
       
   964   by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
       
   965 
       
   966 lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
       
   967   by (simp add: diff_mult_distrib mult_commute [of k])
       
   968   -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
       
   969 
       
   970 lemmas nat_distrib =
       
   971   add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
       
   972 
       
   973 
       
   974 subsection {* Monotonicity of Multiplication *}
       
   975 
       
   976 lemma mult_le_mono1: "i <= (j::nat) ==> i * k <= j * k"
       
   977   by (induct k) (simp_all add: add_le_mono)
       
   978 
       
   979 lemma mult_le_mono2: "i <= (j::nat) ==> k * i <= k * j"
       
   980   apply (drule mult_le_mono1)
       
   981   apply (simp add: mult_commute)
       
   982   done
       
   983 
       
   984 text {* @{text "<="} monotonicity, BOTH arguments *}
       
   985 lemma mult_le_mono: "i <= (j::nat) ==> k <= l ==> i * k <= j * l"
       
   986   apply (erule mult_le_mono1 [THEN le_trans])
       
   987   apply (erule mult_le_mono2)
       
   988   done
       
   989 
       
   990 text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
       
   991 lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"
       
   992   apply (erule_tac m1 = "0" in less_imp_Suc_add [THEN exE])
       
   993   apply simp
       
   994   apply (induct_tac x)
       
   995   apply (simp_all add: add_less_mono)
       
   996   done
       
   997 
       
   998 lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
       
   999   by (drule mult_less_mono2) (simp_all add: mult_commute)
       
  1000 
       
  1001 lemma zero_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
       
  1002   apply (induct m)
       
  1003   apply (case_tac [2] n)
       
  1004   apply simp_all
       
  1005   done
       
  1006 
       
  1007 lemma one_le_mult_iff [simp]: "(Suc 0 <= m * n) = (1 <= m & 1 <= n)"
       
  1008   apply (induct m)
       
  1009   apply (case_tac [2] n)
       
  1010   apply simp_all
       
  1011   done
       
  1012 
       
  1013 lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
       
  1014   apply (induct_tac m)
       
  1015   apply simp
       
  1016   apply (induct_tac n)
       
  1017   apply simp
       
  1018   apply fastsimp
       
  1019   done
       
  1020 
       
  1021 lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
       
  1022   apply (rule trans)
       
  1023   apply (rule_tac [2] mult_eq_1_iff)
       
  1024   apply fastsimp
       
  1025   done
       
  1026 
       
  1027 lemma mult_less_cancel2: "((m::nat) * k < n * k) = (0 < k & m < n)"
       
  1028   apply (safe intro!: mult_less_mono1)
       
  1029   apply (case_tac k)
       
  1030   apply auto
       
  1031   apply (simp del: le_0_eq add: linorder_not_le [symmetric])
       
  1032   apply (blast intro: mult_le_mono1)
       
  1033   done
       
  1034 
       
  1035 lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
       
  1036   by (simp add: mult_less_cancel2 mult_commute [of k])
       
  1037 
       
  1038 declare mult_less_cancel2 [simp]
       
  1039 
       
  1040 lemma mult_le_cancel1 [simp]: "(k * (m::nat) <= k * n) = (0 < k --> m <= n)"
       
  1041   apply (simp add: linorder_not_less [symmetric])
       
  1042   apply auto
       
  1043   done
       
  1044 
       
  1045 lemma mult_le_cancel2 [simp]: "((m::nat) * k <= n * k) = (0 < k --> m <= n)"
       
  1046   apply (simp add: linorder_not_less [symmetric])
       
  1047   apply auto
       
  1048   done
       
  1049 
       
  1050 lemma mult_cancel2: "(m * k = n * k) = (m = n | (k = (0::nat)))"
       
  1051   apply (cut_tac less_linear)
       
  1052   apply safe
       
  1053   apply auto
       
  1054   apply (drule mult_less_mono1, assumption, simp)+
       
  1055   done
       
  1056 
       
  1057 lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
       
  1058   by (simp add: mult_cancel2 mult_commute [of k])
       
  1059 
       
  1060 declare mult_cancel2 [simp]
       
  1061 
       
  1062 lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
       
  1063   by (subst mult_less_cancel1) simp
       
  1064 
       
  1065 lemma Suc_mult_le_cancel1: "(Suc k * m <= Suc k * n) = (m <= n)"
       
  1066   by (subst mult_le_cancel1) simp
       
  1067 
       
  1068 lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
       
  1069   by (subst mult_cancel1) simp
       
  1070 
       
  1071 
       
  1072 text {* Lemma for @{text gcd} *}
       
  1073 lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
       
  1074   apply (drule sym)
       
  1075   apply (rule disjCI)
       
  1076   apply (rule nat_less_cases, erule_tac [2] _)
       
  1077   apply (fastsimp elim!: less_SucE)
       
  1078   apply (fastsimp dest: mult_less_mono2)
       
  1079   done
    47 
  1080 
    48 end
  1081 end