src/HOL/Library/Binomial.thy
changeset 21256 47195501ecf7
child 21263 de65ce2bfb32
equal deleted inserted replaced
21255:617fdb08abe9 21256:47195501ecf7
       
     1 (*  Title:      HOL/Binomial.thy
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson
       
     4     Copyright   1997  University of Cambridge
       
     5 *)
       
     6 
       
     7 header{*Binomial Coefficients*}
       
     8 
       
     9 theory Binomial
       
    10 imports Main
       
    11 begin
       
    12 
       
    13 text{*This development is based on the work of Andy Gordon and
       
    14 Florian Kammueller*}
       
    15 
       
    16 consts
       
    17   binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat"      (infixl "choose" 65)
       
    18 
       
    19 primrec
       
    20   binomial_0:   "(0     choose k) = (if k = 0 then 1 else 0)"
       
    21 
       
    22   binomial_Suc: "(Suc n choose k) =
       
    23                  (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))"
       
    24 
       
    25 lemma binomial_n_0 [simp]: "(n choose 0) = 1"
       
    26 by (cases n) simp_all
       
    27 
       
    28 lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0"
       
    29 by simp
       
    30 
       
    31 lemma binomial_Suc_Suc [simp]:
       
    32      "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
       
    33 by simp
       
    34 
       
    35 lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0"
       
    36 apply (induct "n")
       
    37 apply auto
       
    38 done
       
    39 
       
    40 declare binomial_0 [simp del] binomial_Suc [simp del]
       
    41 
       
    42 lemma binomial_n_n [simp]: "(n choose n) = 1"
       
    43 apply (induct "n")
       
    44 apply (simp_all add: binomial_eq_0)
       
    45 done
       
    46 
       
    47 lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n"
       
    48 by (induct "n", simp_all)
       
    49 
       
    50 lemma binomial_1 [simp]: "(n choose Suc 0) = n"
       
    51 by (induct "n", simp_all)
       
    52 
       
    53 lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)"
       
    54 by (rule_tac m = n and n = k in diff_induct, simp_all)
       
    55 
       
    56 lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)"
       
    57 apply (safe intro!: binomial_eq_0)
       
    58 apply (erule contrapos_pp)
       
    59 apply (simp add: zero_less_binomial)
       
    60 done
       
    61 
       
    62 lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)"
       
    63 by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric])
       
    64 
       
    65 (*Might be more useful if re-oriented*)
       
    66 lemma Suc_times_binomial_eq [rule_format]:
       
    67      "\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
       
    68 apply (induct "n")
       
    69 apply (simp add: binomial_0, clarify)
       
    70 apply (case_tac "k")
       
    71 apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq
       
    72                       binomial_eq_0)
       
    73 done
       
    74 
       
    75 text{*This is the well-known version, but it's harder to use because of the
       
    76   need to reason about division.*}
       
    77 lemma binomial_Suc_Suc_eq_times:
       
    78      "k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
       
    79 by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc
       
    80         del: mult_Suc mult_Suc_right)
       
    81 
       
    82 text{*Another version, with -1 instead of Suc.*}
       
    83 lemma times_binomial_minus1_eq:
       
    84      "[|k \<le> n;  0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))"
       
    85 apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq)
       
    86 apply (simp split add: nat_diff_split, auto)
       
    87 done
       
    88 
       
    89 subsubsection {* Theorems about @{text "choose"} *}
       
    90 
       
    91 text {*
       
    92   \medskip Basic theorem about @{text "choose"}.  By Florian
       
    93   Kamm\"uller, tidied by LCP.
       
    94 *}
       
    95 
       
    96 lemma card_s_0_eq_empty:
       
    97     "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
       
    98   apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
       
    99   apply (simp cong add: rev_conj_cong)
       
   100   done
       
   101 
       
   102 lemma choose_deconstruct: "finite M ==> x \<notin> M
       
   103   ==> {s. s <= insert x M & card(s) = Suc k}
       
   104        = {s. s <= M & card(s) = Suc k} Un
       
   105          {s. EX t. t <= M & card(t) = k & s = insert x t}"
       
   106   apply safe
       
   107    apply (auto intro: finite_subset [THEN card_insert_disjoint])
       
   108   apply (drule_tac x = "xa - {x}" in spec)
       
   109   apply (subgoal_tac "x \<notin> xa", auto)
       
   110   apply (erule rev_mp, subst card_Diff_singleton)
       
   111   apply (auto intro: finite_subset)
       
   112   done
       
   113 
       
   114 text{*There are as many subsets of @{term A} having cardinality @{term k}
       
   115  as there are sets obtained from the former by inserting a fixed element
       
   116  @{term x} into each.*}
       
   117 lemma constr_bij:
       
   118    "[|finite A; x \<notin> A|] ==>
       
   119     card {B. EX C. C <= A & card(C) = k & B = insert x C} =
       
   120     card {B. B <= A & card(B) = k}"
       
   121   apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
       
   122        apply (auto elim!: equalityE simp add: inj_on_def)
       
   123     apply (subst Diff_insert0, auto)
       
   124    txt {* finiteness of the two sets *}
       
   125    apply (rule_tac [2] B = "Pow (A)" in finite_subset)
       
   126    apply (rule_tac B = "Pow (insert x A)" in finite_subset)
       
   127    apply fast+
       
   128   done
       
   129 
       
   130 text {*
       
   131   Main theorem: combinatorial statement about number of subsets of a set.
       
   132 *}
       
   133 
       
   134 lemma n_sub_lemma:
       
   135   "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
       
   136   apply (induct k)
       
   137    apply (simp add: card_s_0_eq_empty, atomize)
       
   138   apply (rotate_tac -1, erule finite_induct)
       
   139    apply (simp_all (no_asm_simp) cong add: conj_cong
       
   140      add: card_s_0_eq_empty choose_deconstruct)
       
   141   apply (subst card_Un_disjoint)
       
   142      prefer 4 apply (force simp add: constr_bij)
       
   143     prefer 3 apply force
       
   144    prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
       
   145      finite_subset [of _ "Pow (insert x F)", standard])
       
   146   apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
       
   147   done
       
   148 
       
   149 theorem n_subsets:
       
   150     "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
       
   151   by (simp add: n_sub_lemma)
       
   152 
       
   153 
       
   154 text{* The binomial theorem (courtesy of Tobias Nipkow): *}
       
   155 
       
   156 theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
       
   157 proof (induct n)
       
   158   case 0 thus ?case by simp
       
   159 next
       
   160   case (Suc n)
       
   161   have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
       
   162     by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
       
   163   have decomp2: "{0..n} = {0} \<union> {1..n}"
       
   164     by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
       
   165   have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
       
   166     using Suc by simp
       
   167   also have "\<dots> =  a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) +
       
   168                    b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
       
   169     by(rule nat_distrib)
       
   170   also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) +
       
   171                   (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))"
       
   172     by(simp add: setsum_right_distrib mult_ac)
       
   173   also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) +
       
   174                   (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))"
       
   175     by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le
       
   176              del:setsum_cl_ivl_Suc)
       
   177   also have "\<dots> = a^(n+1) + b^(n+1) +
       
   178                   (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) +
       
   179                   (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))"
       
   180     by(simp add: decomp2)
       
   181   also have
       
   182     "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))"
       
   183     by(simp add: nat_distrib setsum_addf binomial.simps)
       
   184   also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))"
       
   185     using decomp by simp
       
   186   finally show ?case by simp
       
   187 qed
       
   188 
       
   189 end