equal
deleted
inserted
replaced
150 |
150 |
151 lemma MOST_INFM: "infinite (UNIV::'a set) \<Longrightarrow> MOST x::'a. P x \<Longrightarrow> INFM x::'a. P x" |
151 lemma MOST_INFM: "infinite (UNIV::'a set) \<Longrightarrow> MOST x::'a. P x \<Longrightarrow> INFM x::'a. P x" |
152 by (simp add: eventually_frequently) |
152 by (simp add: eventually_frequently) |
153 |
153 |
154 lemma MOST_Suc_iff: "(MOST n. P (Suc n)) \<longleftrightarrow> (MOST n. P n)" |
154 lemma MOST_Suc_iff: "(MOST n. P (Suc n)) \<longleftrightarrow> (MOST n. P n)" |
155 by (simp add: cofinite_eq_sequentially eventually_sequentially_Suc) |
155 by (simp add: cofinite_eq_sequentially) |
156 |
156 |
157 lemma |
157 lemma |
158 shows MOST_SucI: "MOST n. P n \<Longrightarrow> MOST n. P (Suc n)" |
158 shows MOST_SucI: "MOST n. P n \<Longrightarrow> MOST n. P (Suc n)" |
159 and MOST_SucD: "MOST n. P (Suc n) \<Longrightarrow> MOST n. P n" |
159 and MOST_SucD: "MOST n. P (Suc n) \<Longrightarrow> MOST n. P n" |
160 by (simp_all add: MOST_Suc_iff) |
160 by (simp_all add: MOST_Suc_iff) |
315 shows "A = {}" |
315 shows "A = {}" |
316 using \<open>finite A\<close> A |
316 using \<open>finite A\<close> A |
317 proof (induction A) |
317 proof (induction A) |
318 case (insert a A) |
318 case (insert a A) |
319 with R show ?case |
319 with R show ?case |
320 by (metis empty_iff insert_iff) |
320 by (metis empty_iff insert_iff) |
321 qed simp |
321 qed simp |
322 |
322 |
323 corollary Union_maximal_sets: |
323 corollary Union_maximal_sets: |
324 assumes "finite \<F>" |
324 assumes "finite \<F>" |
325 shows "\<Union>{T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} = \<Union>\<F>" |
325 shows "\<Union>{T \<in> \<F>. \<forall>U\<in>\<F>. \<not> T \<subset> U} = \<Union>\<F>" |