src/HOL/Predicate.thy
changeset 32601 47d0c967c64e
parent 32582 a382876d3290
child 32668 b2de45007537
child 32703 7f9e05b3d0fb
equal deleted inserted replaced
32600:1b3b0cc604ce 32601:47d0c967c64e
    73   by (auto simp add: expand_fun_eq)
    73   by (auto simp add: expand_fun_eq)
    74 
    74 
    75 
    75 
    76 subsubsection {* Binary union *}
    76 subsubsection {* Binary union *}
    77 
    77 
    78 lemma sup1_iff [simp]: "sup A B x \<longleftrightarrow> A x | B x"
    78 lemma sup1_iff: "sup A B x \<longleftrightarrow> A x | B x"
    79   by (simp add: sup_fun_eq sup_bool_eq)
    79   by (simp add: sup_fun_eq sup_bool_eq)
    80 
    80 
    81 lemma sup2_iff [simp]: "sup A B x y \<longleftrightarrow> A x y | B x y"
    81 lemma sup2_iff: "sup A B x y \<longleftrightarrow> A x y | B x y"
    82   by (simp add: sup_fun_eq sup_bool_eq)
    82   by (simp add: sup_fun_eq sup_bool_eq)
    83 
    83 
    84 lemma sup_Un_eq [pred_set_conv]: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
    84 lemma sup_Un_eq [pred_set_conv]: "sup (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
    85   by (simp add: expand_fun_eq)
    85   by (simp add: sup1_iff expand_fun_eq)
    86 
    86 
    87 lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
    87 lemma sup_Un_eq2 [pred_set_conv]: "sup (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
    88   by (simp add: expand_fun_eq)
    88   by (simp add: sup2_iff expand_fun_eq)
    89 
    89 
    90 lemma sup1I1 [elim?]: "A x \<Longrightarrow> sup A B x"
    90 lemma sup1I1 [elim?]: "A x \<Longrightarrow> sup A B x"
    91   by simp
    91   by (simp add: sup1_iff)
    92 
    92 
    93 lemma sup2I1 [elim?]: "A x y \<Longrightarrow> sup A B x y"
    93 lemma sup2I1 [elim?]: "A x y \<Longrightarrow> sup A B x y"
    94   by simp
    94   by (simp add: sup2_iff)
    95 
    95 
    96 lemma sup1I2 [elim?]: "B x \<Longrightarrow> sup A B x"
    96 lemma sup1I2 [elim?]: "B x \<Longrightarrow> sup A B x"
    97   by simp
    97   by (simp add: sup1_iff)
    98 
    98 
    99 lemma sup2I2 [elim?]: "B x y \<Longrightarrow> sup A B x y"
    99 lemma sup2I2 [elim?]: "B x y \<Longrightarrow> sup A B x y"
   100   by simp
   100   by (simp add: sup2_iff)
   101 
   101 
   102 text {*
   102 text {*
   103   \medskip Classical introduction rule: no commitment to @{text A} vs
   103   \medskip Classical introduction rule: no commitment to @{text A} vs
   104   @{text B}.
   104   @{text B}.
   105 *}
   105 *}
   106 
   106 
   107 lemma sup1CI [intro!]: "(~ B x ==> A x) ==> sup A B x"
   107 lemma sup1CI [intro!]: "(~ B x ==> A x) ==> sup A B x"
   108   by auto
   108   by (auto simp add: sup1_iff)
   109 
   109 
   110 lemma sup2CI [intro!]: "(~ B x y ==> A x y) ==> sup A B x y"
   110 lemma sup2CI [intro!]: "(~ B x y ==> A x y) ==> sup A B x y"
   111   by auto
   111   by (auto simp add: sup2_iff)
   112 
   112 
   113 lemma sup1E [elim!]: "sup A B x ==> (A x ==> P) ==> (B x ==> P) ==> P"
   113 lemma sup1E [elim!]: "sup A B x ==> (A x ==> P) ==> (B x ==> P) ==> P"
   114   by simp iprover
   114   by (simp add: sup1_iff) iprover
   115 
   115 
   116 lemma sup2E [elim!]: "sup A B x y ==> (A x y ==> P) ==> (B x y ==> P) ==> P"
   116 lemma sup2E [elim!]: "sup A B x y ==> (A x y ==> P) ==> (B x y ==> P) ==> P"
   117   by simp iprover
   117   by (simp add: sup2_iff) iprover
   118 
   118 
   119 
   119 
   120 subsubsection {* Binary intersection *}
   120 subsubsection {* Binary intersection *}
   121 
   121 
   122 lemma inf1_iff [simp]: "inf A B x \<longleftrightarrow> A x \<and> B x"
   122 lemma inf1_iff: "inf A B x \<longleftrightarrow> A x \<and> B x"
   123   by (simp add: inf_fun_eq inf_bool_eq)
   123   by (simp add: inf_fun_eq inf_bool_eq)
   124 
   124 
   125 lemma inf2_iff [simp]: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
   125 lemma inf2_iff: "inf A B x y \<longleftrightarrow> A x y \<and> B x y"
   126   by (simp add: inf_fun_eq inf_bool_eq)
   126   by (simp add: inf_fun_eq inf_bool_eq)
   127 
   127 
   128 lemma inf_Int_eq [pred_set_conv]: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
   128 lemma inf_Int_eq [pred_set_conv]: "inf (\<lambda>x. x \<in> R) (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
   129   by (simp add: expand_fun_eq)
   129   by (simp add: inf1_iff expand_fun_eq)
   130 
   130 
   131 lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
   131 lemma inf_Int_eq2 [pred_set_conv]: "inf (\<lambda>x y. (x, y) \<in> R) (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
   132   by (simp add: expand_fun_eq)
   132   by (simp add: inf2_iff expand_fun_eq)
   133 
   133 
   134 lemma inf1I [intro!]: "A x ==> B x ==> inf A B x"
   134 lemma inf1I [intro!]: "A x ==> B x ==> inf A B x"
   135   by simp
   135   by (simp add: inf1_iff)
   136 
   136 
   137 lemma inf2I [intro!]: "A x y ==> B x y ==> inf A B x y"
   137 lemma inf2I [intro!]: "A x y ==> B x y ==> inf A B x y"
   138   by simp
   138   by (simp add: inf2_iff)
   139 
   139 
   140 lemma inf1D1: "inf A B x ==> A x"
   140 lemma inf1D1: "inf A B x ==> A x"
   141   by simp
   141   by (simp add: inf1_iff)
   142 
   142 
   143 lemma inf2D1: "inf A B x y ==> A x y"
   143 lemma inf2D1: "inf A B x y ==> A x y"
   144   by simp
   144   by (simp add: inf2_iff)
   145 
   145 
   146 lemma inf1D2: "inf A B x ==> B x"
   146 lemma inf1D2: "inf A B x ==> B x"
   147   by simp
   147   by (simp add: inf1_iff)
   148 
   148 
   149 lemma inf2D2: "inf A B x y ==> B x y"
   149 lemma inf2D2: "inf A B x y ==> B x y"
   150   by simp
   150   by (simp add: inf2_iff)
   151 
   151 
   152 lemma inf1E [elim!]: "inf A B x ==> (A x ==> B x ==> P) ==> P"
   152 lemma inf1E [elim!]: "inf A B x ==> (A x ==> B x ==> P) ==> P"
   153   by simp
   153   by (simp add: inf1_iff)
   154 
   154 
   155 lemma inf2E [elim!]: "inf A B x y ==> (A x y ==> B x y ==> P) ==> P"
   155 lemma inf2E [elim!]: "inf A B x y ==> (A x y ==> B x y ==> P) ==> P"
   156   by simp
   156   by (simp add: inf2_iff)
   157 
   157 
   158 
   158 
   159 subsubsection {* Unions of families *}
   159 subsubsection {* Unions of families *}
   160 
   160 
   161 lemma SUP1_iff [simp]: "(SUP x:A. B x) b = (EX x:A. B x b)"
   161 lemma SUP1_iff: "(SUP x:A. B x) b = (EX x:A. B x b)"
   162   by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
   162   by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
   163 
   163 
   164 lemma SUP2_iff [simp]: "(SUP x:A. B x) b c = (EX x:A. B x b c)"
   164 lemma SUP2_iff: "(SUP x:A. B x) b c = (EX x:A. B x b c)"
   165   by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
   165   by (simp add: SUPR_def Sup_fun_def Sup_bool_def) blast
   166 
   166 
   167 lemma SUP1_I [intro]: "a : A ==> B a b ==> (SUP x:A. B x) b"
   167 lemma SUP1_I [intro]: "a : A ==> B a b ==> (SUP x:A. B x) b"
   168   by auto
   168   by (auto simp add: SUP1_iff)
   169 
   169 
   170 lemma SUP2_I [intro]: "a : A ==> B a b c ==> (SUP x:A. B x) b c"
   170 lemma SUP2_I [intro]: "a : A ==> B a b c ==> (SUP x:A. B x) b c"
   171   by auto
   171   by (auto simp add: SUP2_iff)
   172 
   172 
   173 lemma SUP1_E [elim!]: "(SUP x:A. B x) b ==> (!!x. x : A ==> B x b ==> R) ==> R"
   173 lemma SUP1_E [elim!]: "(SUP x:A. B x) b ==> (!!x. x : A ==> B x b ==> R) ==> R"
   174   by auto
   174   by (auto simp add: SUP1_iff)
   175 
   175 
   176 lemma SUP2_E [elim!]: "(SUP x:A. B x) b c ==> (!!x. x : A ==> B x b c ==> R) ==> R"
   176 lemma SUP2_E [elim!]: "(SUP x:A. B x) b c ==> (!!x. x : A ==> B x b c ==> R) ==> R"
   177   by auto
   177   by (auto simp add: SUP2_iff)
   178 
   178 
   179 lemma SUP_UN_eq: "(SUP i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (UN i. r i))"
   179 lemma SUP_UN_eq: "(SUP i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (UN i. r i))"
   180   by (simp add: expand_fun_eq)
   180   by (simp add: SUP1_iff expand_fun_eq)
   181 
   181 
   182 lemma SUP_UN_eq2: "(SUP i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (UN i. r i))"
   182 lemma SUP_UN_eq2: "(SUP i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (UN i. r i))"
   183   by (simp add: expand_fun_eq)
   183   by (simp add: SUP2_iff expand_fun_eq)
   184 
   184 
   185 
   185 
   186 subsubsection {* Intersections of families *}
   186 subsubsection {* Intersections of families *}
   187 
   187 
   188 lemma INF1_iff [simp]: "(INF x:A. B x) b = (ALL x:A. B x b)"
   188 lemma INF1_iff: "(INF x:A. B x) b = (ALL x:A. B x b)"
   189   by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
   189   by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
   190 
   190 
   191 lemma INF2_iff [simp]: "(INF x:A. B x) b c = (ALL x:A. B x b c)"
   191 lemma INF2_iff: "(INF x:A. B x) b c = (ALL x:A. B x b c)"
   192   by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
   192   by (simp add: INFI_def Inf_fun_def Inf_bool_def) blast
   193 
   193 
   194 lemma INF1_I [intro!]: "(!!x. x : A ==> B x b) ==> (INF x:A. B x) b"
   194 lemma INF1_I [intro!]: "(!!x. x : A ==> B x b) ==> (INF x:A. B x) b"
   195   by auto
   195   by (auto simp add: INF1_iff)
   196 
   196 
   197 lemma INF2_I [intro!]: "(!!x. x : A ==> B x b c) ==> (INF x:A. B x) b c"
   197 lemma INF2_I [intro!]: "(!!x. x : A ==> B x b c) ==> (INF x:A. B x) b c"
   198   by auto
   198   by (auto simp add: INF2_iff)
   199 
   199 
   200 lemma INF1_D [elim]: "(INF x:A. B x) b ==> a : A ==> B a b"
   200 lemma INF1_D [elim]: "(INF x:A. B x) b ==> a : A ==> B a b"
   201   by auto
   201   by (auto simp add: INF1_iff)
   202 
   202 
   203 lemma INF2_D [elim]: "(INF x:A. B x) b c ==> a : A ==> B a b c"
   203 lemma INF2_D [elim]: "(INF x:A. B x) b c ==> a : A ==> B a b c"
   204   by auto
   204   by (auto simp add: INF2_iff)
   205 
   205 
   206 lemma INF1_E [elim]: "(INF x:A. B x) b ==> (B a b ==> R) ==> (a ~: A ==> R) ==> R"
   206 lemma INF1_E [elim]: "(INF x:A. B x) b ==> (B a b ==> R) ==> (a ~: A ==> R) ==> R"
   207   by auto
   207   by (auto simp add: INF1_iff)
   208 
   208 
   209 lemma INF2_E [elim]: "(INF x:A. B x) b c ==> (B a b c ==> R) ==> (a ~: A ==> R) ==> R"
   209 lemma INF2_E [elim]: "(INF x:A. B x) b c ==> (B a b c ==> R) ==> (a ~: A ==> R) ==> R"
   210   by auto
   210   by (auto simp add: INF2_iff)
   211 
   211 
   212 lemma INF_INT_eq: "(INF i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (INT i. r i))"
   212 lemma INF_INT_eq: "(INF i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (INT i. r i))"
   213   by (simp add: expand_fun_eq)
   213   by (simp add: INF1_iff expand_fun_eq)
   214 
   214 
   215 lemma INF_INT_eq2: "(INF i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (INT i. r i))"
   215 lemma INF_INT_eq2: "(INF i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (INT i. r i))"
   216   by (simp add: expand_fun_eq)
   216   by (simp add: INF2_iff expand_fun_eq)
   217 
   217 
   218 
   218 
   219 subsection {* Predicates as relations *}
   219 subsection {* Predicates as relations *}
   220 
   220 
   221 subsubsection {* Composition  *}
   221 subsubsection {* Composition  *}
   427 lemma sup_bind:
   427 lemma sup_bind:
   428   "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
   428   "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
   429   by (auto simp add: bind_def sup_pred_def expand_fun_eq)
   429   by (auto simp add: bind_def sup_pred_def expand_fun_eq)
   430 
   430 
   431 lemma Sup_bind: "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
   431 lemma Sup_bind: "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
   432   by (auto simp add: bind_def Sup_pred_def expand_fun_eq)
   432   by (auto simp add: bind_def Sup_pred_def SUP1_iff expand_fun_eq)
   433 
   433 
   434 lemma pred_iffI:
   434 lemma pred_iffI:
   435   assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
   435   assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
   436   and "\<And>x. eval B x \<Longrightarrow> eval A x"
   436   and "\<And>x. eval B x \<Longrightarrow> eval A x"
   437   shows "A = B"
   437   shows "A = B"
   460 
   460 
   461 lemma botE: "eval \<bottom> x \<Longrightarrow> P"
   461 lemma botE: "eval \<bottom> x \<Longrightarrow> P"
   462   unfolding bot_pred_def by auto
   462   unfolding bot_pred_def by auto
   463 
   463 
   464 lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x"
   464 lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x"
   465   unfolding sup_pred_def by simp
   465   unfolding sup_pred_def by (simp add: sup1_iff)
   466 
   466 
   467 lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" 
   467 lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" 
   468   unfolding sup_pred_def by simp
   468   unfolding sup_pred_def by (simp add: sup1_iff)
   469 
   469 
   470 lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P"
   470 lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P"
   471   unfolding sup_pred_def by auto
   471   unfolding sup_pred_def by auto
   472 
   472 
   473 lemma single_not_bot [simp]:
   473 lemma single_not_bot [simp]: