src/HOL/Log.thy
changeset 50247 491c5c81c2e8
parent 49962 a8cc904a6820
child 50322 b06b95a5fda2
equal deleted inserted replaced
50245:dea9363887a6 50247:491c5c81c2e8
   357   ultimately
   357   ultimately
   358   show "eventually (\<lambda>x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1)
   358   show "eventually (\<lambda>x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1)
   359 qed
   359 qed
   360 
   360 
   361 lemma tendsto_neg_powr:
   361 lemma tendsto_neg_powr:
   362   assumes "s < 0" and "real_tendsto_inf f F"
   362   assumes "s < 0" and "LIM x F. f x :> at_top"
   363   shows "((\<lambda>x. f x powr s) ---> 0) F"
   363   shows "((\<lambda>x. f x powr s) ---> 0) F"
   364 proof (rule tendstoI)
   364 proof (rule tendstoI)
   365   fix e :: real assume "0 < e"
   365   fix e :: real assume "0 < e"
   366   def Z \<equiv> "e powr (1 / s)"
   366   def Z \<equiv> "e powr (1 / s)"
   367   from assms have "eventually (\<lambda>x. Z < f x) F" by (simp add: real_tendsto_inf_def)
   367   from assms have "eventually (\<lambda>x. Z < f x) F" by (simp add: filter_lim_at_top)
   368   moreover
   368   moreover
   369   from assms have "\<And>x. Z < x \<Longrightarrow> x powr s < Z powr s"
   369   from assms have "\<And>x. Z < x \<Longrightarrow> x powr s < Z powr s"
   370     by (auto simp: Z_def intro!: powr_less_mono2_neg)
   370     by (auto simp: Z_def intro!: powr_less_mono2_neg)
   371   with assms `0 < e` have "\<And>x. Z < x \<Longrightarrow> dist (x powr s) 0 < e"
   371   with assms `0 < e` have "\<And>x. Z < x \<Longrightarrow> dist (x powr s) 0 < e"
   372     by (simp add: powr_powr Z_def dist_real_def)
   372     by (simp add: powr_powr Z_def dist_real_def)