src/HOL/Algebra/Sylow.thy
changeset 64914 51f015bd4565
parent 64912 68f0465d956b
child 67399 eab6ce8368fa
equal deleted inserted replaced
64913:3a9eb793fa10 64914:51f015bd4565
   143 end
   143 end
   144 
   144 
   145 
   145 
   146 subsubsection \<open>Introduction and Destruct Rules for \<open>H\<close>\<close>
   146 subsubsection \<open>Introduction and Destruct Rules for \<open>H\<close>\<close>
   147 
   147 
   148 lemma (in sylow_central) H_I: "\<lbrakk>g \<in> carrier G; M1 #> g = M1\<rbrakk> \<Longrightarrow> g \<in> H"
   148 context sylow_central
       
   149 begin
       
   150 
       
   151 lemma H_I: "\<lbrakk>g \<in> carrier G; M1 #> g = M1\<rbrakk> \<Longrightarrow> g \<in> H"
   149   by (simp add: H_def)
   152   by (simp add: H_def)
   150 
   153 
   151 lemma (in sylow_central) H_into_carrier_G: "x \<in> H \<Longrightarrow> x \<in> carrier G"
   154 lemma H_into_carrier_G: "x \<in> H \<Longrightarrow> x \<in> carrier G"
   152   by (simp add: H_def)
   155   by (simp add: H_def)
   153 
   156 
   154 lemma (in sylow_central) in_H_imp_eq: "g \<in> H \<Longrightarrow> M1 #> g = M1"
   157 lemma in_H_imp_eq: "g \<in> H \<Longrightarrow> M1 #> g = M1"
   155   by (simp add: H_def)
   158   by (simp add: H_def)
   156 
   159 
   157 lemma (in sylow_central) H_m_closed: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
   160 lemma H_m_closed: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
   158   by (simp add: H_def coset_mult_assoc [symmetric])
   161   by (simp add: H_def coset_mult_assoc [symmetric])
   159 
   162 
   160 lemma (in sylow_central) H_not_empty: "H \<noteq> {}"
   163 lemma H_not_empty: "H \<noteq> {}"
   161   apply (simp add: H_def)
   164   apply (simp add: H_def)
   162   apply (rule exI [of _ \<one>])
   165   apply (rule exI [of _ \<one>])
   163   apply simp
   166   apply simp
   164   done
   167   done
   165 
   168 
   166 lemma (in sylow_central) H_is_subgroup: "subgroup H G"
   169 lemma H_is_subgroup: "subgroup H G"
   167   apply (rule subgroupI)
   170   apply (rule subgroupI)
   168      apply (rule subsetI)
   171      apply (rule subsetI)
   169      apply (erule H_into_carrier_G)
   172      apply (erule H_into_carrier_G)
   170     apply (rule H_not_empty)
   173     apply (rule H_not_empty)
   171    apply (simp add: H_def)
   174    apply (simp add: H_def)
   174    apply (simp add: coset_mult_assoc )
   177    apply (simp add: coset_mult_assoc )
   175   apply (blast intro: H_m_closed)
   178   apply (blast intro: H_m_closed)
   176   done
   179   done
   177 
   180 
   178 
   181 
   179 lemma (in sylow_central) rcosetGM1g_subset_G:
   182 lemma rcosetGM1g_subset_G: "\<lbrakk>g \<in> carrier G; x \<in> M1 #> g\<rbrakk> \<Longrightarrow> x \<in> carrier G"
   180   "\<lbrakk>g \<in> carrier G; x \<in> M1 #> g\<rbrakk> \<Longrightarrow> x \<in> carrier G"
       
   181   by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
   183   by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
   182 
   184 
   183 lemma (in sylow_central) finite_M1: "finite M1"
   185 lemma finite_M1: "finite M1"
   184   by (rule finite_subset [OF M1_subset_G finite_G])
   186   by (rule finite_subset [OF M1_subset_G finite_G])
   185 
   187 
   186 lemma (in sylow_central) finite_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> finite (M1 #> g)"
   188 lemma finite_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> finite (M1 #> g)"
   187   using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI by blast
   189   using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI by blast
   188 
   190 
   189 lemma (in sylow_central) M1_cardeq_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> card (M1 #> g) = card M1"
   191 lemma M1_cardeq_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> card (M1 #> g) = card M1"
   190   by (simp add: card_cosets_equal rcosetsI)
   192   by (simp add: card_cosets_equal rcosetsI)
   191 
   193 
   192 lemma (in sylow_central) M1_RelM_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> (M1, M1 #> g) \<in> RelM"
   194 lemma M1_RelM_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> (M1, M1 #> g) \<in> RelM"
   193   apply (simp add: RelM_def calM_def card_M1)
   195   apply (simp add: RelM_def calM_def card_M1)
   194   apply (rule conjI)
   196   apply (rule conjI)
   195    apply (blast intro: rcosetGM1g_subset_G)
   197    apply (blast intro: rcosetGM1g_subset_G)
   196   apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
   198   apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
   197   apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
   199   apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
   198   done
   200   done
   199 
   201 
       
   202 end
       
   203 
   200 
   204 
   201 subsection \<open>Equal Cardinalities of \<open>M\<close> and the Set of Cosets\<close>
   205 subsection \<open>Equal Cardinalities of \<open>M\<close> and the Set of Cosets\<close>
   202 
   206 
   203 text \<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
   207 text \<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
   204  their cardinalities are equal.\<close>
   208  their cardinalities are equal.\<close>
   205 
   209 
   206 lemma ElemClassEquiv: "\<lbrakk>equiv A r; C \<in> A // r\<rbrakk> \<Longrightarrow> \<forall>x \<in> C. \<forall>y \<in> C. (x, y) \<in> r"
   210 lemma ElemClassEquiv: "\<lbrakk>equiv A r; C \<in> A // r\<rbrakk> \<Longrightarrow> \<forall>x \<in> C. \<forall>y \<in> C. (x, y) \<in> r"
   207   unfolding equiv_def quotient_def sym_def trans_def by blast
   211   unfolding equiv_def quotient_def sym_def trans_def by blast
   208 
   212 
   209 lemma (in sylow_central) M_elem_map: "M2 \<in> M \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> M1 #> g = M2"
   213 context sylow_central
       
   214 begin
       
   215 
       
   216 lemma M_elem_map: "M2 \<in> M \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> M1 #> g = M2"
   210   using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
   217   using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
   211   by (simp add: RelM_def) (blast dest!: bspec)
   218   by (simp add: RelM_def) (blast dest!: bspec)
   212 
   219 
   213 lemmas (in sylow_central) M_elem_map_carrier =
   220 lemmas M_elem_map_carrier = M_elem_map [THEN someI_ex, THEN conjunct1]
   214   M_elem_map [THEN someI_ex, THEN conjunct1]
   221 
   215 
   222 lemmas M_elem_map_eq = M_elem_map [THEN someI_ex, THEN conjunct2]
   216 lemmas (in sylow_central) M_elem_map_eq =
   223 
   217   M_elem_map [THEN someI_ex, THEN conjunct2]
   224 lemma M_funcset_rcosets_H:
   218 
       
   219 lemma (in sylow_central) M_funcset_rcosets_H:
       
   220   "(\<lambda>x\<in>M. H #> (SOME g. g \<in> carrier G \<and> M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
   225   "(\<lambda>x\<in>M. H #> (SOME g. g \<in> carrier G \<and> M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
   221   by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup_imp_subset)
   226   by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup_imp_subset)
   222 
   227 
   223 lemma (in sylow_central) inj_M_GmodH: "\<exists>f \<in> M \<rightarrow> rcosets H. inj_on f M"
   228 lemma inj_M_GmodH: "\<exists>f \<in> M \<rightarrow> rcosets H. inj_on f M"
   224   apply (rule bexI)
   229   apply (rule bexI)
   225    apply (rule_tac [2] M_funcset_rcosets_H)
   230    apply (rule_tac [2] M_funcset_rcosets_H)
   226   apply (rule inj_onI, simp)
   231   apply (rule inj_onI, simp)
   227   apply (rule trans [OF _ M_elem_map_eq])
   232   apply (rule trans [OF _ M_elem_map_eq])
   228    prefer 2 apply assumption
   233    prefer 2 apply assumption
   234     apply (rule_tac [3] H_is_subgroup)
   239     apply (rule_tac [3] H_is_subgroup)
   235    prefer 2 apply (blast intro: M_elem_map_carrier)
   240    prefer 2 apply (blast intro: M_elem_map_carrier)
   236   apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
   241   apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
   237   done
   242   done
   238 
   243 
   239 
   244 end
   240 subsubsection\<open>The Opposite Injection\<close>
   245 
   241 
   246 
   242 lemma (in sylow_central) H_elem_map: "H1 \<in> rcosets H \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> H #> g = H1"
   247 subsubsection \<open>The Opposite Injection\<close>
       
   248 
       
   249 context sylow_central
       
   250 begin
       
   251 
       
   252 lemma H_elem_map: "H1 \<in> rcosets H \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> H #> g = H1"
   243   by (auto simp: RCOSETS_def)
   253   by (auto simp: RCOSETS_def)
   244 
   254 
   245 lemmas (in sylow_central) H_elem_map_carrier =
   255 lemmas H_elem_map_carrier = H_elem_map [THEN someI_ex, THEN conjunct1]
   246   H_elem_map [THEN someI_ex, THEN conjunct1]
   256 
   247 
   257 lemmas H_elem_map_eq = H_elem_map [THEN someI_ex, THEN conjunct2]
   248 lemmas (in sylow_central) H_elem_map_eq =
   258 
   249   H_elem_map [THEN someI_ex, THEN conjunct2]
   259 lemma rcosets_H_funcset_M:
   250 
       
   251 lemma (in sylow_central) rcosets_H_funcset_M:
       
   252   "(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
   260   "(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
   253   apply (simp add: RCOSETS_def)
   261   apply (simp add: RCOSETS_def)
   254   apply (fast intro: someI2
   262   apply (fast intro: someI2
   255       intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
   263       intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
   256   done
   264   done
   257 
   265 
   258 text \<open>Close to a duplicate of \<open>inj_M_GmodH\<close>.\<close>
   266 text \<open>Close to a duplicate of \<open>inj_M_GmodH\<close>.\<close>
   259 lemma (in sylow_central) inj_GmodH_M: "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
   267 lemma inj_GmodH_M: "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
   260   apply (rule bexI)
   268   apply (rule bexI)
   261    apply (rule_tac [2] rcosets_H_funcset_M)
   269    apply (rule_tac [2] rcosets_H_funcset_M)
   262   apply (rule inj_onI)
   270   apply (rule inj_onI)
   263   apply (simp)
   271   apply (simp)
   264   apply (rule trans [OF _ H_elem_map_eq])
   272   apply (rule trans [OF _ H_elem_map_eq])
   271     apply (blast intro: H_elem_map_carrier)
   279     apply (blast intro: H_elem_map_carrier)
   272    apply (rule H_is_subgroup)
   280    apply (rule H_is_subgroup)
   273   apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
   281   apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
   274   done
   282   done
   275 
   283 
   276 lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow (carrier G)"
   284 lemma calM_subset_PowG: "calM \<subseteq> Pow (carrier G)"
   277   by (auto simp: calM_def)
   285   by (auto simp: calM_def)
   278 
   286 
   279 
   287 
   280 lemma (in sylow_central) finite_M: "finite M"
   288 lemma finite_M: "finite M"
   281   by (metis M_subset_calM finite_calM rev_finite_subset)
   289   by (metis M_subset_calM finite_calM rev_finite_subset)
   282 
   290 
   283 lemma (in sylow_central) cardMeqIndexH: "card M = card (rcosets H)"
   291 lemma cardMeqIndexH: "card M = card (rcosets H)"
   284   apply (insert inj_M_GmodH inj_GmodH_M)
   292   apply (insert inj_M_GmodH inj_GmodH_M)
   285   apply (blast intro: card_bij finite_M H_is_subgroup
   293   apply (blast intro: card_bij finite_M H_is_subgroup
   286       rcosets_subset_PowG [THEN finite_subset]
   294       rcosets_subset_PowG [THEN finite_subset]
   287       finite_Pow_iff [THEN iffD2])
   295       finite_Pow_iff [THEN iffD2])
   288   done
   296   done
   289 
   297 
   290 lemma (in sylow_central) index_lem: "card M * card H = order G"
   298 lemma index_lem: "card M * card H = order G"
   291   by (simp add: cardMeqIndexH lagrange H_is_subgroup)
   299   by (simp add: cardMeqIndexH lagrange H_is_subgroup)
   292 
   300 
   293 lemma (in sylow_central) lemma_leq1: "p^a \<le> card H"
   301 lemma lemma_leq1: "p^a \<le> card H"
   294   apply (rule dvd_imp_le)
   302   apply (rule dvd_imp_le)
   295    apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
   303    apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
   296    prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
   304    prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
   297   apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd zero_less_m)
   305   apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd zero_less_m)
   298   done
   306   done
   299 
   307 
   300 lemma (in sylow_central) lemma_leq2: "card H \<le> p^a"
   308 lemma lemma_leq2: "card H \<le> p^a"
   301   apply (subst card_M1 [symmetric])
   309   apply (subst card_M1 [symmetric])
   302   apply (cut_tac M1_inj_H)
   310   apply (cut_tac M1_inj_H)
   303   apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset [OF _ finite_G])
   311   apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset [OF _ finite_G])
   304   done
   312   done
   305 
   313 
   306 lemma (in sylow_central) card_H_eq: "card H = p^a"
   314 lemma card_H_eq: "card H = p^a"
   307   by (blast intro: le_antisym lemma_leq1 lemma_leq2)
   315   by (blast intro: le_antisym lemma_leq1 lemma_leq2)
       
   316 
       
   317 end
   308 
   318 
   309 lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G \<and> card H = p^a"
   319 lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G \<and> card H = p^a"
   310   using lemma_A1
   320   using lemma_A1
   311   apply clarify
   321   apply clarify
   312   apply (frule existsM1inM, clarify)
   322   apply (frule existsM1inM, clarify)