src/HOL/Old_Number_Theory/IntPrimes.thy
changeset 32479 521cc9bf2958
parent 30242 aea5d7fa7ef5
child 32960 69916a850301
equal deleted inserted replaced
32478:87201c60ae7d 32479:521cc9bf2958
       
     1 (*  Author:     Thomas M. Rasmussen
       
     2     Copyright   2000  University of Cambridge
       
     3 *)
       
     4 
       
     5 header {* Divisibility and prime numbers (on integers) *}
       
     6 
       
     7 theory IntPrimes
       
     8 imports Main Primes
       
     9 begin
       
    10 
       
    11 text {*
       
    12   The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
       
    13   congruences (all on the Integers).  Comparable to theory @{text
       
    14   Primes}, but @{text dvd} is included here as it is not present in
       
    15   main HOL.  Also includes extended GCD and congruences not present in
       
    16   @{text Primes}.
       
    17 *}
       
    18 
       
    19 
       
    20 subsection {* Definitions *}
       
    21 
       
    22 consts
       
    23   xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
       
    24 
       
    25 recdef xzgcda
       
    26   "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
       
    27     :: int * int * int * int *int * int * int * int => nat)"
       
    28   "xzgcda (m, n, r', r, s', s, t', t) =
       
    29 	(if r \<le> 0 then (r', s', t')
       
    30 	 else xzgcda (m, n, r, r' mod r, 
       
    31 		      s, s' - (r' div r) * s, 
       
    32 		      t, t' - (r' div r) * t))"
       
    33 
       
    34 definition
       
    35   zprime :: "int \<Rightarrow> bool" where
       
    36   "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"
       
    37 
       
    38 definition
       
    39   xzgcd :: "int => int => int * int * int" where
       
    40   "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
       
    41 
       
    42 definition
       
    43   zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
       
    44   "[a = b] (mod m) = (m dvd (a - b))"
       
    45 
       
    46 subsection {* Euclid's Algorithm and GCD *}
       
    47 
       
    48 
       
    49 lemma zrelprime_zdvd_zmult_aux:
       
    50      "zgcd n k = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"
       
    51     by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs zmult_1_right)
       
    52 
       
    53 lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"
       
    54   apply (case_tac "0 \<le> m")
       
    55    apply (blast intro: zrelprime_zdvd_zmult_aux)
       
    56   apply (subgoal_tac "k dvd -m")
       
    57    apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
       
    58   done
       
    59 
       
    60 lemma zgcd_geq_zero: "0 <= zgcd x y"
       
    61   by (auto simp add: zgcd_def)
       
    62 
       
    63 text{*This is merely a sanity check on zprime, since the previous version
       
    64       denoted the empty set.*}
       
    65 lemma "zprime 2"
       
    66   apply (auto simp add: zprime_def) 
       
    67   apply (frule zdvd_imp_le, simp) 
       
    68   apply (auto simp add: order_le_less dvd_def) 
       
    69   done
       
    70 
       
    71 lemma zprime_imp_zrelprime:
       
    72     "zprime p ==> \<not> p dvd n ==> zgcd n p = 1"
       
    73   apply (auto simp add: zprime_def)
       
    74   apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)
       
    75   done
       
    76 
       
    77 lemma zless_zprime_imp_zrelprime:
       
    78     "zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"
       
    79   apply (erule zprime_imp_zrelprime)
       
    80   apply (erule zdvd_not_zless, assumption)
       
    81   done
       
    82 
       
    83 lemma zprime_zdvd_zmult:
       
    84     "0 \<le> (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
       
    85   by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)
       
    86 
       
    87 lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"
       
    88   apply (rule zgcd_eq [THEN trans])
       
    89   apply (simp add: mod_add_eq)
       
    90   apply (rule zgcd_eq [symmetric])
       
    91   done
       
    92 
       
    93 lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"
       
    94 by (simp add: zgcd_greatest_iff)
       
    95 
       
    96 lemma zgcd_zmult_zdvd_zgcd:
       
    97     "zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"
       
    98   apply (simp add: zgcd_greatest_iff)
       
    99   apply (rule_tac n = k in zrelprime_zdvd_zmult)
       
   100    prefer 2
       
   101    apply (simp add: zmult_commute)
       
   102   apply (metis zgcd_1 zgcd_commute zgcd_left_commute)
       
   103   done
       
   104 
       
   105 lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"
       
   106   by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
       
   107 
       
   108 lemma zgcd_zgcd_zmult:
       
   109     "zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"
       
   110   by (simp add: zgcd_zmult_cancel)
       
   111 
       
   112 lemma zdvd_iff_zgcd: "0 < m ==> m dvd n \<longleftrightarrow> zgcd n m = m"
       
   113   by (metis abs_of_pos zdvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)
       
   114 
       
   115 
       
   116 
       
   117 subsection {* Congruences *}
       
   118 
       
   119 lemma zcong_1 [simp]: "[a = b] (mod 1)"
       
   120   by (unfold zcong_def, auto)
       
   121 
       
   122 lemma zcong_refl [simp]: "[k = k] (mod m)"
       
   123   by (unfold zcong_def, auto)
       
   124 
       
   125 lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
       
   126   unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..
       
   127 
       
   128 lemma zcong_zadd:
       
   129     "[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
       
   130   apply (unfold zcong_def)
       
   131   apply (rule_tac s = "(a - b) + (c - d)" in subst)
       
   132    apply (rule_tac [2] dvd_add, auto)
       
   133   done
       
   134 
       
   135 lemma zcong_zdiff:
       
   136     "[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
       
   137   apply (unfold zcong_def)
       
   138   apply (rule_tac s = "(a - b) - (c - d)" in subst)
       
   139    apply (rule_tac [2] dvd_diff, auto)
       
   140   done
       
   141 
       
   142 lemma zcong_trans:
       
   143   "[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
       
   144 unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)
       
   145 
       
   146 lemma zcong_zmult:
       
   147     "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
       
   148   apply (rule_tac b = "b * c" in zcong_trans)
       
   149    apply (unfold zcong_def)
       
   150   apply (metis zdiff_zmult_distrib2 dvd_mult zmult_commute)
       
   151   apply (metis zdiff_zmult_distrib2 dvd_mult)
       
   152   done
       
   153 
       
   154 lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
       
   155   by (rule zcong_zmult, simp_all)
       
   156 
       
   157 lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
       
   158   by (rule zcong_zmult, simp_all)
       
   159 
       
   160 lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
       
   161   apply (unfold zcong_def)
       
   162   apply (rule dvd_diff, simp_all)
       
   163   done
       
   164 
       
   165 lemma zcong_square:
       
   166    "[| zprime p;  0 < a;  [a * a = 1] (mod p)|]
       
   167     ==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"
       
   168   apply (unfold zcong_def)
       
   169   apply (rule zprime_zdvd_zmult)
       
   170     apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
       
   171      prefer 4
       
   172      apply (simp add: zdvd_reduce)
       
   173     apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2)
       
   174   done
       
   175 
       
   176 lemma zcong_cancel:
       
   177   "0 \<le> m ==>
       
   178     zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
       
   179   apply safe
       
   180    prefer 2
       
   181    apply (blast intro: zcong_scalar)
       
   182   apply (case_tac "b < a")
       
   183    prefer 2
       
   184    apply (subst zcong_sym)
       
   185    apply (unfold zcong_def)
       
   186    apply (rule_tac [!] zrelprime_zdvd_zmult)
       
   187      apply (simp_all add: zdiff_zmult_distrib)
       
   188   apply (subgoal_tac "m dvd (-(a * k - b * k))")
       
   189    apply simp
       
   190   apply (subst dvd_minus_iff, assumption)
       
   191   done
       
   192 
       
   193 lemma zcong_cancel2:
       
   194   "0 \<le> m ==>
       
   195     zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
       
   196   by (simp add: zmult_commute zcong_cancel)
       
   197 
       
   198 lemma zcong_zgcd_zmult_zmod:
       
   199   "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1
       
   200     ==> [a = b] (mod m * n)"
       
   201   apply (auto simp add: zcong_def dvd_def)
       
   202   apply (subgoal_tac "m dvd n * ka")
       
   203    apply (subgoal_tac "m dvd ka")
       
   204     apply (case_tac [2] "0 \<le> ka")
       
   205   apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult)
       
   206   apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute)
       
   207   apply (metis mult_le_0_iff  zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
       
   208   apply (metis dvd_triv_left)
       
   209   done
       
   210 
       
   211 lemma zcong_zless_imp_eq:
       
   212   "0 \<le> a ==>
       
   213     a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"
       
   214   apply (unfold zcong_def dvd_def, auto)
       
   215   apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)
       
   216   apply (metis diff_add_cancel mod_pos_pos_trivial zadd_0 zadd_commute zmod_eq_0_iff mod_add_right_eq)
       
   217   done
       
   218 
       
   219 lemma zcong_square_zless:
       
   220   "zprime p ==> 0 < a ==> a < p ==>
       
   221     [a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"
       
   222   apply (cut_tac p = p and a = a in zcong_square)
       
   223      apply (simp add: zprime_def)
       
   224     apply (auto intro: zcong_zless_imp_eq)
       
   225   done
       
   226 
       
   227 lemma zcong_not:
       
   228     "0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"
       
   229   apply (unfold zcong_def)
       
   230   apply (rule zdvd_not_zless, auto)
       
   231   done
       
   232 
       
   233 lemma zcong_zless_0:
       
   234     "0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
       
   235   apply (unfold zcong_def dvd_def, auto)
       
   236   apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)
       
   237   done
       
   238 
       
   239 lemma zcong_zless_unique:
       
   240     "0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
       
   241   apply auto
       
   242    prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)
       
   243   apply (unfold zcong_def dvd_def)
       
   244   apply (rule_tac x = "a mod m" in exI, auto)
       
   245   apply (metis zmult_div_cancel)
       
   246   done
       
   247 
       
   248 lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"
       
   249   unfolding zcong_def
       
   250   apply (auto elim!: dvdE simp add: algebra_simps)
       
   251   apply (rule_tac x = "-k" in exI) apply simp
       
   252   done
       
   253 
       
   254 lemma zgcd_zcong_zgcd:
       
   255   "0 < m ==>
       
   256     zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"
       
   257   by (auto simp add: zcong_iff_lin)
       
   258 
       
   259 lemma zcong_zmod_aux:
       
   260      "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
       
   261   by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac)
       
   262 
       
   263 lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
       
   264   apply (unfold zcong_def)
       
   265   apply (rule_tac t = "a - b" in ssubst)
       
   266   apply (rule_tac m = m in zcong_zmod_aux)
       
   267   apply (rule trans)
       
   268    apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
       
   269   apply (simp add: zadd_commute)
       
   270   done
       
   271 
       
   272 lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
       
   273   apply auto
       
   274   apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)
       
   275   apply (metis zcong_refl zcong_zmod)
       
   276   done
       
   277 
       
   278 lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
       
   279   by (auto simp add: zcong_def)
       
   280 
       
   281 lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
       
   282   by (auto simp add: zcong_def)
       
   283 
       
   284 lemma "[a = b] (mod m) = (a mod m = b mod m)"
       
   285   apply (case_tac "m = 0", simp add: DIVISION_BY_ZERO)
       
   286   apply (simp add: linorder_neq_iff)
       
   287   apply (erule disjE)  
       
   288    prefer 2 apply (simp add: zcong_zmod_eq)
       
   289   txt{*Remainding case: @{term "m<0"}*}
       
   290   apply (rule_tac t = m in zminus_zminus [THEN subst])
       
   291   apply (subst zcong_zminus)
       
   292   apply (subst zcong_zmod_eq, arith)
       
   293   apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) 
       
   294   apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
       
   295   done
       
   296 
       
   297 subsection {* Modulo *}
       
   298 
       
   299 lemma zmod_zdvd_zmod:
       
   300     "0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
       
   301   by (rule mod_mod_cancel) 
       
   302 
       
   303 
       
   304 subsection {* Extended GCD *}
       
   305 
       
   306 declare xzgcda.simps [simp del]
       
   307 
       
   308 lemma xzgcd_correct_aux1:
       
   309   "zgcd r' r = k --> 0 < r -->
       
   310     (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
       
   311   apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
       
   312     z = s and aa = t' and ab = t in xzgcda.induct)
       
   313   apply (subst zgcd_eq)
       
   314   apply (subst xzgcda.simps, auto)
       
   315   apply (case_tac "r' mod r = 0")
       
   316    prefer 2
       
   317    apply (frule_tac a = "r'" in pos_mod_sign, auto)
       
   318   apply (rule exI)
       
   319   apply (rule exI)
       
   320   apply (subst xzgcda.simps, auto)
       
   321   done
       
   322 
       
   323 lemma xzgcd_correct_aux2:
       
   324   "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
       
   325     zgcd r' r = k"
       
   326   apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
       
   327     z = s and aa = t' and ab = t in xzgcda.induct)
       
   328   apply (subst zgcd_eq)
       
   329   apply (subst xzgcda.simps)
       
   330   apply (auto simp add: linorder_not_le)
       
   331   apply (case_tac "r' mod r = 0")
       
   332    prefer 2
       
   333    apply (frule_tac a = "r'" in pos_mod_sign, auto)
       
   334   apply (metis Pair_eq simps zle_refl)
       
   335   done
       
   336 
       
   337 lemma xzgcd_correct:
       
   338     "0 < n ==> (zgcd m n = k) = (\<exists>s t. xzgcd m n = (k, s, t))"
       
   339   apply (unfold xzgcd_def)
       
   340   apply (rule iffI)
       
   341    apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
       
   342     apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
       
   343   done
       
   344 
       
   345 
       
   346 text {* \medskip @{term xzgcd} linear *}
       
   347 
       
   348 lemma xzgcda_linear_aux1:
       
   349   "(a - r * b) * m + (c - r * d) * (n::int) =
       
   350    (a * m + c * n) - r * (b * m + d * n)"
       
   351   by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc)
       
   352 
       
   353 lemma xzgcda_linear_aux2:
       
   354   "r' = s' * m + t' * n ==> r = s * m + t * n
       
   355     ==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
       
   356   apply (rule trans)
       
   357    apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
       
   358   apply (simp add: eq_diff_eq mult_commute)
       
   359   done
       
   360 
       
   361 lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"
       
   362   by (rule iffD2 [OF order_less_le conjI])
       
   363 
       
   364 lemma xzgcda_linear [rule_format]:
       
   365   "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
       
   366     r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
       
   367   apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
       
   368     z = s and aa = t' and ab = t in xzgcda.induct)
       
   369   apply (subst xzgcda.simps)
       
   370   apply (simp (no_asm))
       
   371   apply (rule impI)+
       
   372   apply (case_tac "r' mod r = 0")
       
   373    apply (simp add: xzgcda.simps, clarify)
       
   374   apply (subgoal_tac "0 < r' mod r")
       
   375    apply (rule_tac [2] order_le_neq_implies_less)
       
   376    apply (rule_tac [2] pos_mod_sign)
       
   377     apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
       
   378       s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
       
   379   done
       
   380 
       
   381 lemma xzgcd_linear:
       
   382     "0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
       
   383   apply (unfold xzgcd_def)
       
   384   apply (erule xzgcda_linear, assumption, auto)
       
   385   done
       
   386 
       
   387 lemma zgcd_ex_linear:
       
   388     "0 < n ==> zgcd m n = k ==> (\<exists>s t. k = s * m + t * n)"
       
   389   apply (simp add: xzgcd_correct, safe)
       
   390   apply (rule exI)+
       
   391   apply (erule xzgcd_linear, auto)
       
   392   done
       
   393 
       
   394 lemma zcong_lineq_ex:
       
   395     "0 < n ==> zgcd a n = 1 ==> \<exists>x. [a * x = 1] (mod n)"
       
   396   apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
       
   397   apply (rule_tac x = s in exI)
       
   398   apply (rule_tac b = "s * a + t * n" in zcong_trans)
       
   399    prefer 2
       
   400    apply simp
       
   401   apply (unfold zcong_def)
       
   402   apply (simp (no_asm) add: zmult_commute)
       
   403   done
       
   404 
       
   405 lemma zcong_lineq_unique:
       
   406   "0 < n ==>
       
   407     zgcd a n = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"
       
   408   apply auto
       
   409    apply (rule_tac [2] zcong_zless_imp_eq)
       
   410        apply (tactic {* stac (thm "zcong_cancel2" RS sym) 6 *})
       
   411          apply (rule_tac [8] zcong_trans)
       
   412           apply (simp_all (no_asm_simp))
       
   413    prefer 2
       
   414    apply (simp add: zcong_sym)
       
   415   apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
       
   416   apply (rule_tac x = "x * b mod n" in exI, safe)
       
   417     apply (simp_all (no_asm_simp))
       
   418   apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq zmult_1 zmult_assoc)
       
   419   done
       
   420 
       
   421 end