src/HOL/Tools/prop_logic.ML
changeset 41447 537b290bbe38
parent 38795 848be46708dc
child 41471 54a58904a598
equal deleted inserted replaced
41446:92facb553823 41447:537b290bbe38
     5 Formulas of propositional logic.
     5 Formulas of propositional logic.
     6 *)
     6 *)
     7 
     7 
     8 signature PROP_LOGIC =
     8 signature PROP_LOGIC =
     9 sig
     9 sig
    10 	datatype prop_formula =
    10   datatype prop_formula =
    11 		  True
    11       True
    12 		| False
    12     | False
    13 		| BoolVar of int  (* NOTE: only use indices >= 1 *)
    13     | BoolVar of int  (* NOTE: only use indices >= 1 *)
    14 		| Not of prop_formula
    14     | Not of prop_formula
    15 		| Or of prop_formula * prop_formula
    15     | Or of prop_formula * prop_formula
    16 		| And of prop_formula * prop_formula
    16     | And of prop_formula * prop_formula
    17 
    17 
    18 	val SNot     : prop_formula -> prop_formula
    18   val SNot: prop_formula -> prop_formula
    19 	val SOr      : prop_formula * prop_formula -> prop_formula
    19   val SOr: prop_formula * prop_formula -> prop_formula
    20 	val SAnd     : prop_formula * prop_formula -> prop_formula
    20   val SAnd: prop_formula * prop_formula -> prop_formula
    21 	val simplify : prop_formula -> prop_formula  (* eliminates True/False and double-negation *)
    21   val simplify: prop_formula -> prop_formula  (* eliminates True/False and double-negation *)
    22 
    22 
    23 	val indices : prop_formula -> int list  (* set of all variable indices *)
    23   val indices: prop_formula -> int list  (* set of all variable indices *)
    24 	val maxidx  : prop_formula -> int       (* maximal variable index *)
    24   val maxidx: prop_formula -> int       (* maximal variable index *)
    25 
    25 
    26 	val exists      : prop_formula list -> prop_formula  (* finite disjunction *)
    26   val exists: prop_formula list -> prop_formula  (* finite disjunction *)
    27 	val all         : prop_formula list -> prop_formula  (* finite conjunction *)
    27   val all: prop_formula list -> prop_formula  (* finite conjunction *)
    28 	val dot_product : prop_formula list * prop_formula list -> prop_formula
    28   val dot_product: prop_formula list * prop_formula list -> prop_formula
    29 
    29 
    30 	val is_nnf : prop_formula -> bool  (* returns true iff the formula is in negation normal form *)
    30   val is_nnf: prop_formula -> bool  (* returns true iff the formula is in negation normal form *)
    31 	val is_cnf : prop_formula -> bool  (* returns true iff the formula is in conjunctive normal form *)
    31   val is_cnf: prop_formula -> bool  (* returns true iff the formula is in conjunctive normal form *)
    32 
    32 
    33 	val nnf    : prop_formula -> prop_formula  (* negation normal form *)
    33   val nnf: prop_formula -> prop_formula  (* negation normal form *)
    34 	val cnf    : prop_formula -> prop_formula  (* conjunctive normal form *)
    34   val cnf: prop_formula -> prop_formula  (* conjunctive normal form *)
    35 	val defcnf : prop_formula -> prop_formula  (* definitional cnf *)
    35   val defcnf: prop_formula -> prop_formula  (* definitional cnf *)
    36 
    36 
    37 	val eval : (int -> bool) -> prop_formula -> bool  (* semantics *)
    37   val eval: (int -> bool) -> prop_formula -> bool  (* semantics *)
    38 
    38 
    39 	(* propositional representation of HOL terms *)
    39   (* propositional representation of HOL terms *)
    40 	val prop_formula_of_term : term -> int Termtab.table -> prop_formula * int Termtab.table
    40   val prop_formula_of_term: term -> int Termtab.table -> prop_formula * int Termtab.table
    41 	(* HOL term representation of propositional formulae *)
    41   (* HOL term representation of propositional formulae *)
    42 	val term_of_prop_formula : prop_formula -> term
    42   val term_of_prop_formula: prop_formula -> term
    43 end;
    43 end;
    44 
    44 
    45 structure PropLogic : PROP_LOGIC =
    45 structure PropLogic : PROP_LOGIC =
    46 struct
    46 struct
    47 
    47 
    49 (* prop_formula: formulas of propositional logic, built from Boolean         *)
    49 (* prop_formula: formulas of propositional logic, built from Boolean         *)
    50 (*               variables (referred to by index) and True/False using       *)
    50 (*               variables (referred to by index) and True/False using       *)
    51 (*               not/or/and                                                  *)
    51 (*               not/or/and                                                  *)
    52 (* ------------------------------------------------------------------------- *)
    52 (* ------------------------------------------------------------------------- *)
    53 
    53 
    54 	datatype prop_formula =
    54 datatype prop_formula =
    55 		  True
    55     True
    56 		| False
    56   | False
    57 		| BoolVar of int  (* NOTE: only use indices >= 1 *)
    57   | BoolVar of int  (* NOTE: only use indices >= 1 *)
    58 		| Not of prop_formula
    58   | Not of prop_formula
    59 		| Or of prop_formula * prop_formula
    59   | Or of prop_formula * prop_formula
    60 		| And of prop_formula * prop_formula;
    60   | And of prop_formula * prop_formula;
    61 
    61 
    62 (* ------------------------------------------------------------------------- *)
    62 (* ------------------------------------------------------------------------- *)
    63 (* The following constructor functions make sure that True and False do not  *)
    63 (* The following constructor functions make sure that True and False do not  *)
    64 (* occur within any of the other connectives (i.e. Not, Or, And), and        *)
    64 (* occur within any of the other connectives (i.e. Not, Or, And), and        *)
    65 (* perform double-negation elimination.                                      *)
    65 (* perform double-negation elimination.                                      *)
    66 (* ------------------------------------------------------------------------- *)
    66 (* ------------------------------------------------------------------------- *)
    67 
    67 
    68 	(* prop_formula -> prop_formula *)
    68 fun SNot True = False
    69 
    69   | SNot False = True
    70 	fun SNot True     = False
    70   | SNot (Not fm) = fm
    71 	  | SNot False    = True
    71   | SNot fm = Not fm;
    72 	  | SNot (Not fm) = fm
    72 
    73 	  | SNot fm       = Not fm;
    73 fun SOr (True, _) = True
    74 
    74   | SOr (_, True) = True
    75 	(* prop_formula * prop_formula -> prop_formula *)
    75   | SOr (False, fm) = fm
    76 
    76   | SOr (fm, False) = fm
    77 	fun SOr (True, _)   = True
    77   | SOr (fm1, fm2) = Or (fm1, fm2);
    78 	  | SOr (_, True)   = True
    78 
    79 	  | SOr (False, fm) = fm
    79 fun SAnd (True, fm) = fm
    80 	  | SOr (fm, False) = fm
    80   | SAnd (fm, True) = fm
    81 	  | SOr (fm1, fm2)  = Or (fm1, fm2);
    81   | SAnd (False, _) = False
    82 
    82   | SAnd (_, False) = False
    83 	(* prop_formula * prop_formula -> prop_formula *)
    83   | SAnd (fm1, fm2) = And (fm1, fm2);
    84 
       
    85 	fun SAnd (True, fm) = fm
       
    86 	  | SAnd (fm, True) = fm
       
    87 	  | SAnd (False, _) = False
       
    88 	  | SAnd (_, False) = False
       
    89 	  | SAnd (fm1, fm2) = And (fm1, fm2);
       
    90 
    84 
    91 (* ------------------------------------------------------------------------- *)
    85 (* ------------------------------------------------------------------------- *)
    92 (* simplify: eliminates True/False below other connectives, and double-      *)
    86 (* simplify: eliminates True/False below other connectives, and double-      *)
    93 (*      negation                                                             *)
    87 (*      negation                                                             *)
    94 (* ------------------------------------------------------------------------- *)
    88 (* ------------------------------------------------------------------------- *)
    95 
    89 
    96 	(* prop_formula -> prop_formula *)
    90 fun simplify (Not fm) = SNot (simplify fm)
    97 
    91   | simplify (Or (fm1, fm2)) = SOr (simplify fm1, simplify fm2)
    98 	fun simplify (Not fm)         = SNot (simplify fm)
    92   | simplify (And (fm1, fm2)) = SAnd (simplify fm1, simplify fm2)
    99 	  | simplify (Or (fm1, fm2))  = SOr (simplify fm1, simplify fm2)
    93   | simplify fm = fm;
   100 	  | simplify (And (fm1, fm2)) = SAnd (simplify fm1, simplify fm2)
       
   101 	  | simplify fm               = fm;
       
   102 
    94 
   103 (* ------------------------------------------------------------------------- *)
    95 (* ------------------------------------------------------------------------- *)
   104 (* indices: collects all indices of Boolean variables that occur in a        *)
    96 (* indices: collects all indices of Boolean variables that occur in a        *)
   105 (*      propositional formula 'fm'; no duplicates                            *)
    97 (*      propositional formula 'fm'; no duplicates                            *)
   106 (* ------------------------------------------------------------------------- *)
    98 (* ------------------------------------------------------------------------- *)
   107 
    99 
   108 	(* prop_formula -> int list *)
   100 fun indices True = []
   109 
   101   | indices False = []
   110 	fun indices True             = []
   102   | indices (BoolVar i) = [i]
   111 	  | indices False            = []
   103   | indices (Not fm) = indices fm
   112 	  | indices (BoolVar i)      = [i]
   104   | indices (Or (fm1, fm2)) = union (op =) (indices fm1) (indices fm2)
   113 	  | indices (Not fm)         = indices fm
   105   | indices (And (fm1, fm2)) = union (op =) (indices fm1) (indices fm2);
   114 	  | indices (Or (fm1, fm2))  = union (op =) (indices fm1) (indices fm2)
       
   115 	  | indices (And (fm1, fm2)) = union (op =) (indices fm1) (indices fm2);
       
   116 
   106 
   117 (* ------------------------------------------------------------------------- *)
   107 (* ------------------------------------------------------------------------- *)
   118 (* maxidx: computes the maximal variable index occuring in a formula of      *)
   108 (* maxidx: computes the maximal variable index occuring in a formula of      *)
   119 (*      propositional logic 'fm'; 0 if 'fm' contains no variable             *)
   109 (*      propositional logic 'fm'; 0 if 'fm' contains no variable             *)
   120 (* ------------------------------------------------------------------------- *)
   110 (* ------------------------------------------------------------------------- *)
   121 
   111 
   122 	(* prop_formula -> int *)
   112 fun maxidx True = 0
   123 
   113   | maxidx False = 0
   124 	fun maxidx True             = 0
   114   | maxidx (BoolVar i) = i
   125 	  | maxidx False            = 0
   115   | maxidx (Not fm) = maxidx fm
   126 	  | maxidx (BoolVar i)      = i
   116   | maxidx (Or (fm1, fm2)) = Int.max (maxidx fm1, maxidx fm2)
   127 	  | maxidx (Not fm)         = maxidx fm
   117   | maxidx (And (fm1, fm2)) = Int.max (maxidx fm1, maxidx fm2);
   128 	  | maxidx (Or (fm1, fm2))  = Int.max (maxidx fm1, maxidx fm2)
       
   129 	  | maxidx (And (fm1, fm2)) = Int.max (maxidx fm1, maxidx fm2);
       
   130 
   118 
   131 (* ------------------------------------------------------------------------- *)
   119 (* ------------------------------------------------------------------------- *)
   132 (* exists: computes the disjunction over a list 'xs' of propositional        *)
   120 (* exists: computes the disjunction over a list 'xs' of propositional        *)
   133 (*      formulas                                                             *)
   121 (*      formulas                                                             *)
   134 (* ------------------------------------------------------------------------- *)
   122 (* ------------------------------------------------------------------------- *)
   135 
   123 
   136 	(* prop_formula list -> prop_formula *)
   124 fun exists xs = Library.foldl SOr (False, xs);
   137 
       
   138 	fun exists xs = Library.foldl SOr (False, xs);
       
   139 
   125 
   140 (* ------------------------------------------------------------------------- *)
   126 (* ------------------------------------------------------------------------- *)
   141 (* all: computes the conjunction over a list 'xs' of propositional formulas  *)
   127 (* all: computes the conjunction over a list 'xs' of propositional formulas  *)
   142 (* ------------------------------------------------------------------------- *)
   128 (* ------------------------------------------------------------------------- *)
   143 
   129 
   144 	(* prop_formula list -> prop_formula *)
   130 fun all xs = Library.foldl SAnd (True, xs);
   145 
       
   146 	fun all xs = Library.foldl SAnd (True, xs);
       
   147 
   131 
   148 (* ------------------------------------------------------------------------- *)
   132 (* ------------------------------------------------------------------------- *)
   149 (* dot_product: ([x1,...,xn], [y1,...,yn]) -> x1*y1+...+xn*yn                *)
   133 (* dot_product: ([x1,...,xn], [y1,...,yn]) -> x1*y1+...+xn*yn                *)
   150 (* ------------------------------------------------------------------------- *)
   134 (* ------------------------------------------------------------------------- *)
   151 
   135 
   152 	(* prop_formula list * prop_formula list -> prop_formula *)
   136 fun dot_product (xs, ys) = exists (map SAnd (xs ~~ ys));
   153 
       
   154 	fun dot_product (xs,ys) = exists (map SAnd (xs~~ys));
       
   155 
   137 
   156 (* ------------------------------------------------------------------------- *)
   138 (* ------------------------------------------------------------------------- *)
   157 (* is_nnf: returns 'true' iff the formula is in negation normal form (i.e.,  *)
   139 (* is_nnf: returns 'true' iff the formula is in negation normal form (i.e.,  *)
   158 (*         only variables may be negated, but not subformulas).              *)
   140 (*         only variables may be negated, but not subformulas).              *)
   159 (* ------------------------------------------------------------------------- *)
   141 (* ------------------------------------------------------------------------- *)
   160 
   142 
   161 	local
   143 local
   162 		fun is_literal (BoolVar _)       = true
   144   fun is_literal (BoolVar _) = true
   163 		  | is_literal (Not (BoolVar _)) = true
   145     | is_literal (Not (BoolVar _)) = true
   164 		  | is_literal _                 = false
   146     | is_literal _ = false
   165 		fun is_conj_disj (Or (fm1, fm2))  =
   147   fun is_conj_disj (Or (fm1, fm2)) = is_conj_disj fm1 andalso is_conj_disj fm2
   166 			is_conj_disj fm1 andalso is_conj_disj fm2
   148     | is_conj_disj (And (fm1, fm2)) = is_conj_disj fm1 andalso is_conj_disj fm2
   167 		  | is_conj_disj (And (fm1, fm2)) =
   149     | is_conj_disj fm = is_literal fm
   168 			is_conj_disj fm1 andalso is_conj_disj fm2
   150 in
   169 		  | is_conj_disj fm               =
   151   fun is_nnf True = true
   170 			is_literal fm
   152     | is_nnf False = true
   171 	in
   153     | is_nnf fm = is_conj_disj fm
   172 		fun is_nnf True  = true
   154 end;
   173 		  | is_nnf False = true
       
   174 		  | is_nnf fm    = is_conj_disj fm
       
   175 	end;
       
   176 
   155 
   177 (* ------------------------------------------------------------------------- *)
   156 (* ------------------------------------------------------------------------- *)
   178 (* is_cnf: returns 'true' iff the formula is in conjunctive normal form      *)
   157 (* is_cnf: returns 'true' iff the formula is in conjunctive normal form      *)
   179 (*         (i.e., a conjunction of disjunctions of literals). 'is_cnf'       *)
   158 (*         (i.e., a conjunction of disjunctions of literals). 'is_cnf'       *)
   180 (*         implies 'is_nnf'.                                                 *)
   159 (*         implies 'is_nnf'.                                                 *)
   181 (* ------------------------------------------------------------------------- *)
   160 (* ------------------------------------------------------------------------- *)
   182 
   161 
   183 	local
   162 local
   184 		fun is_literal (BoolVar _)       = true
   163   fun is_literal (BoolVar _) = true
   185 		  | is_literal (Not (BoolVar _)) = true
   164     | is_literal (Not (BoolVar _)) = true
   186 		  | is_literal _                 = false
   165     | is_literal _ = false
   187 		fun is_disj (Or (fm1, fm2)) = is_disj fm1 andalso is_disj fm2
   166   fun is_disj (Or (fm1, fm2)) = is_disj fm1 andalso is_disj fm2
   188 		  | is_disj fm              = is_literal fm
   167     | is_disj fm = is_literal fm
   189 		fun is_conj (And (fm1, fm2)) = is_conj fm1 andalso is_conj fm2
   168   fun is_conj (And (fm1, fm2)) = is_conj fm1 andalso is_conj fm2
   190 		  | is_conj fm               = is_disj fm
   169     | is_conj fm = is_disj fm
   191 	in
   170 in
   192 		fun is_cnf True             = true
   171   fun is_cnf True = true
   193 		  | is_cnf False            = true
   172     | is_cnf False = true
   194 		  | is_cnf fm               = is_conj fm
   173     | is_cnf fm = is_conj fm
   195 	end;
   174 end;
   196 
   175 
   197 (* ------------------------------------------------------------------------- *)
   176 (* ------------------------------------------------------------------------- *)
   198 (* nnf: computes the negation normal form of a formula 'fm' of propositional *)
   177 (* nnf: computes the negation normal form of a formula 'fm' of propositional *)
   199 (*      logic (i.e., only variables may be negated, but not subformulas).    *)
   178 (*      logic (i.e., only variables may be negated, but not subformulas).    *)
   200 (*      Simplification (cf. 'simplify') is performed as well. Not            *)
   179 (*      Simplification (cf. 'simplify') is performed as well. Not            *)
   201 (*      surprisingly, 'is_nnf o nnf' always returns 'true'. 'nnf fm' returns *)
   180 (*      surprisingly, 'is_nnf o nnf' always returns 'true'. 'nnf fm' returns *)
   202 (*      'fm' if (and only if) 'is_nnf fm' returns 'true'.                    *)
   181 (*      'fm' if (and only if) 'is_nnf fm' returns 'true'.                    *)
   203 (* ------------------------------------------------------------------------- *)
   182 (* ------------------------------------------------------------------------- *)
   204 
   183 
   205 	(* prop_formula -> prop_formula *)
   184 fun nnf fm =
   206 
   185   let
   207 	fun nnf fm =
   186     fun
   208 	let
   187       (* constants *)
   209 		fun
   188         nnf_aux True = True
   210 			(* constants *)
   189       | nnf_aux False = False
   211 			    nnf_aux True                   = True
   190       (* variables *)
   212 			  | nnf_aux False                  = False
   191       | nnf_aux (BoolVar i) = (BoolVar i)
   213 			(* variables *)
   192       (* 'or' and 'and' as outermost connectives are left untouched *)
   214 			  | nnf_aux (BoolVar i)            = (BoolVar i)
   193       | nnf_aux (Or  (fm1, fm2)) = SOr (nnf_aux fm1, nnf_aux fm2)
   215 			(* 'or' and 'and' as outermost connectives are left untouched *)
   194       | nnf_aux (And (fm1, fm2)) = SAnd (nnf_aux fm1, nnf_aux fm2)
   216 			  | nnf_aux (Or  (fm1, fm2))       = SOr  (nnf_aux fm1, nnf_aux fm2)
   195       (* 'not' + constant *)
   217 			  | nnf_aux (And (fm1, fm2))       = SAnd (nnf_aux fm1, nnf_aux fm2)
   196       | nnf_aux (Not True) = False
   218 			(* 'not' + constant *)
   197       | nnf_aux (Not False) = True
   219 			  | nnf_aux (Not True)             = False
   198       (* 'not' + variable *)
   220 			  | nnf_aux (Not False)            = True
   199       | nnf_aux (Not (BoolVar i)) = Not (BoolVar i)
   221 			(* 'not' + variable *)
   200       (* pushing 'not' inside of 'or'/'and' using de Morgan's laws *)
   222 			  | nnf_aux (Not (BoolVar i))      = Not (BoolVar i)
   201       | nnf_aux (Not (Or  (fm1, fm2))) = SAnd (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
   223 			(* pushing 'not' inside of 'or'/'and' using de Morgan's laws *)
   202       | nnf_aux (Not (And (fm1, fm2))) = SOr  (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
   224 			  | nnf_aux (Not (Or  (fm1, fm2))) = SAnd (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
   203       (* double-negation elimination *)
   225 			  | nnf_aux (Not (And (fm1, fm2))) = SOr  (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
   204       | nnf_aux (Not (Not fm)) = nnf_aux fm
   226 			(* double-negation elimination *)
   205   in
   227 			  | nnf_aux (Not (Not fm))         = nnf_aux fm
   206     if is_nnf fm then fm
   228 	in
   207     else nnf_aux fm
   229 		if is_nnf fm then
   208   end;
   230 			fm
       
   231 		else
       
   232 			nnf_aux fm
       
   233 	end;
       
   234 
   209 
   235 (* ------------------------------------------------------------------------- *)
   210 (* ------------------------------------------------------------------------- *)
   236 (* cnf: computes the conjunctive normal form (i.e., a conjunction of         *)
   211 (* cnf: computes the conjunctive normal form (i.e., a conjunction of         *)
   237 (*      disjunctions of literals) of a formula 'fm' of propositional logic.  *)
   212 (*      disjunctions of literals) of a formula 'fm' of propositional logic.  *)
   238 (*      Simplification (cf. 'simplify') is performed as well. The result     *)
   213 (*      Simplification (cf. 'simplify') is performed as well. The result     *)
   239 (*      is equivalent to 'fm', but may be exponentially longer. Not          *)
   214 (*      is equivalent to 'fm', but may be exponentially longer. Not          *)
   240 (*      surprisingly, 'is_cnf o cnf' always returns 'true'. 'cnf fm' returns *)
   215 (*      surprisingly, 'is_cnf o cnf' always returns 'true'. 'cnf fm' returns *)
   241 (*      'fm' if (and only if) 'is_cnf fm' returns 'true'.                    *)
   216 (*      'fm' if (and only if) 'is_cnf fm' returns 'true'.                    *)
   242 (* ------------------------------------------------------------------------- *)
   217 (* ------------------------------------------------------------------------- *)
   243 
   218 
   244 	(* prop_formula -> prop_formula *)
   219 fun cnf fm =
   245 
   220   let
   246 	fun cnf fm =
   221     (* function to push an 'Or' below 'And's, using distributive laws *)
   247 	let
   222     fun cnf_or (And (fm11, fm12), fm2) =
   248 		(* function to push an 'Or' below 'And's, using distributive laws *)
   223           And (cnf_or (fm11, fm2), cnf_or (fm12, fm2))
   249 		fun cnf_or (And (fm11, fm12), fm2) =
   224       | cnf_or (fm1, And (fm21, fm22)) =
   250 			And (cnf_or (fm11, fm2), cnf_or (fm12, fm2))
   225           And (cnf_or (fm1, fm21), cnf_or (fm1, fm22))
   251 		  | cnf_or (fm1, And (fm21, fm22)) =
   226     (* neither subformula contains 'And' *)
   252 			And (cnf_or (fm1, fm21), cnf_or (fm1, fm22))
   227       | cnf_or (fm1, fm2) = Or (fm1, fm2)
   253 		(* neither subformula contains 'And' *)
   228     fun cnf_from_nnf True = True
   254 		  | cnf_or (fm1, fm2) =
   229       | cnf_from_nnf False = False
   255 			Or (fm1, fm2)
   230       | cnf_from_nnf (BoolVar i) = BoolVar i
   256 		fun cnf_from_nnf True             = True
   231     (* 'fm' must be a variable since the formula is in NNF *)
   257 		  | cnf_from_nnf False            = False
   232       | cnf_from_nnf (Not fm) = Not fm
   258 		  | cnf_from_nnf (BoolVar i)      = BoolVar i
   233     (* 'Or' may need to be pushed below 'And' *)
   259 		(* 'fm' must be a variable since the formula is in NNF *)
   234       | cnf_from_nnf (Or (fm1, fm2)) =
   260 		  | cnf_from_nnf (Not fm)         = Not fm
   235         cnf_or (cnf_from_nnf fm1, cnf_from_nnf fm2)
   261 		(* 'Or' may need to be pushed below 'And' *)
   236     (* 'And' as outermost connective is left untouched *)
   262 		  | cnf_from_nnf (Or (fm1, fm2))  =
   237       | cnf_from_nnf (And (fm1, fm2)) =
   263 		    cnf_or (cnf_from_nnf fm1, cnf_from_nnf fm2)
   238         And (cnf_from_nnf fm1, cnf_from_nnf fm2)
   264 		(* 'And' as outermost connective is left untouched *)
   239   in
   265 		  | cnf_from_nnf (And (fm1, fm2)) =
   240     if is_cnf fm then fm
   266 		    And (cnf_from_nnf fm1, cnf_from_nnf fm2)
   241     else (cnf_from_nnf o nnf) fm
   267 	in
   242   end;
   268 		if is_cnf fm then
       
   269 			fm
       
   270 		else
       
   271 			(cnf_from_nnf o nnf) fm
       
   272 	end;
       
   273 
   243 
   274 (* ------------------------------------------------------------------------- *)
   244 (* ------------------------------------------------------------------------- *)
   275 (* defcnf: computes a definitional conjunctive normal form of a formula 'fm' *)
   245 (* defcnf: computes a definitional conjunctive normal form of a formula 'fm' *)
   276 (*      of propositional logic. Simplification (cf. 'simplify') is performed *)
   246 (*      of propositional logic. Simplification (cf. 'simplify') is performed *)
   277 (*      as well. 'defcnf' may introduce auxiliary Boolean variables to avoid *)
   247 (*      as well. 'defcnf' may introduce auxiliary Boolean variables to avoid *)
   280 (*      necessarily equivalent to 'fm'. Not surprisingly, 'is_cnf o defcnf'  *)
   250 (*      necessarily equivalent to 'fm'. Not surprisingly, 'is_cnf o defcnf'  *)
   281 (*      always returns 'true'. 'defcnf fm' returns 'fm' if (and only if)     *)
   251 (*      always returns 'true'. 'defcnf fm' returns 'fm' if (and only if)     *)
   282 (*      'is_cnf fm' returns 'true'.                                          *)
   252 (*      'is_cnf fm' returns 'true'.                                          *)
   283 (* ------------------------------------------------------------------------- *)
   253 (* ------------------------------------------------------------------------- *)
   284 
   254 
   285 	(* prop_formula -> prop_formula *)
   255 fun defcnf fm =
   286 
   256   if is_cnf fm then fm
   287 	fun defcnf fm =
   257   else
   288 		if is_cnf fm then
   258     let
   289 			fm
   259       val fm' = nnf fm
   290 		else
   260       (* 'new' specifies the next index that is available to introduce an auxiliary variable *)
   291 		let
   261       (* int ref *)
   292 			val fm' = nnf fm
   262       val new = Unsynchronized.ref (maxidx fm' + 1)
   293 			(* 'new' specifies the next index that is available to introduce an auxiliary variable *)
   263       (* unit -> int *)
   294 			(* int ref *)
   264       fun new_idx () = let val idx = !new in new := idx+1; idx end
   295 			val new = Unsynchronized.ref (maxidx fm' + 1)
   265       (* replaces 'And' by an auxiliary variable (and its definition) *)
   296 			(* unit -> int *)
   266       (* prop_formula -> prop_formula * prop_formula list *)
   297 			fun new_idx () = let val idx = !new in new := idx+1; idx end
   267       fun defcnf_or (And x) =
   298 			(* replaces 'And' by an auxiliary variable (and its definition) *)
   268             let
   299 			(* prop_formula -> prop_formula * prop_formula list *)
   269               val i = new_idx ()
   300 			fun defcnf_or (And x) =
   270             in
   301 				let
   271               (* Note that definitions are in NNF, but not CNF. *)
   302 					val i = new_idx ()
   272               (BoolVar i, [Or (Not (BoolVar i), And x)])
   303 				in
   273             end
   304 					(* Note that definitions are in NNF, but not CNF. *)
   274         | defcnf_or (Or (fm1, fm2)) =
   305 					(BoolVar i, [Or (Not (BoolVar i), And x)])
   275             let
   306 				end
   276               val (fm1', defs1) = defcnf_or fm1
   307 			  | defcnf_or (Or (fm1, fm2)) =
   277               val (fm2', defs2) = defcnf_or fm2
   308 				let
   278             in
   309 					val (fm1', defs1) = defcnf_or fm1
   279               (Or (fm1', fm2'), defs1 @ defs2)
   310 					val (fm2', defs2) = defcnf_or fm2
   280             end
   311 				in
   281         | defcnf_or fm = (fm, [])
   312 					(Or (fm1', fm2'), defs1 @ defs2)
   282       (* prop_formula -> prop_formula *)
   313 				end
   283       fun defcnf_from_nnf True = True
   314 			  | defcnf_or fm =
   284         | defcnf_from_nnf False = False
   315 				(fm, [])
   285         | defcnf_from_nnf (BoolVar i) = BoolVar i
   316 			(* prop_formula -> prop_formula *)
   286       (* 'fm' must be a variable since the formula is in NNF *)
   317 			fun defcnf_from_nnf True             = True
   287         | defcnf_from_nnf (Not fm) = Not fm
   318 			  | defcnf_from_nnf False            = False
   288       (* 'Or' may need to be pushed below 'And' *)
   319 			  | defcnf_from_nnf (BoolVar i)      = BoolVar i
   289       (* 'Or' of literal and 'And': use distributivity *)
   320 			(* 'fm' must be a variable since the formula is in NNF *)
   290         | defcnf_from_nnf (Or (BoolVar i, And (fm1, fm2))) =
   321 			  | defcnf_from_nnf (Not fm)         = Not fm
   291             And (defcnf_from_nnf (Or (BoolVar i, fm1)),
   322 			(* 'Or' may need to be pushed below 'And' *)
   292                  defcnf_from_nnf (Or (BoolVar i, fm2)))
   323 			(* 'Or' of literal and 'And': use distributivity *)
   293         | defcnf_from_nnf (Or (Not (BoolVar i), And (fm1, fm2))) =
   324 			  | defcnf_from_nnf (Or (BoolVar i, And (fm1, fm2))) =
   294             And (defcnf_from_nnf (Or (Not (BoolVar i), fm1)),
   325 				And (defcnf_from_nnf (Or (BoolVar i, fm1)),
   295                  defcnf_from_nnf (Or (Not (BoolVar i), fm2)))
   326 				     defcnf_from_nnf (Or (BoolVar i, fm2)))
   296         | defcnf_from_nnf (Or (And (fm1, fm2), BoolVar i)) =
   327 			  | defcnf_from_nnf (Or (Not (BoolVar i), And (fm1, fm2))) =
   297             And (defcnf_from_nnf (Or (fm1, BoolVar i)),
   328 				And (defcnf_from_nnf (Or (Not (BoolVar i), fm1)),
   298                  defcnf_from_nnf (Or (fm2, BoolVar i)))
   329 				     defcnf_from_nnf (Or (Not (BoolVar i), fm2)))
   299         | defcnf_from_nnf (Or (And (fm1, fm2), Not (BoolVar i))) =
   330 			  | defcnf_from_nnf (Or (And (fm1, fm2), BoolVar i)) =
   300             And (defcnf_from_nnf (Or (fm1, Not (BoolVar i))),
   331 				And (defcnf_from_nnf (Or (fm1, BoolVar i)),
   301                  defcnf_from_nnf (Or (fm2, Not (BoolVar i))))
   332 				     defcnf_from_nnf (Or (fm2, BoolVar i)))
   302       (* all other cases: turn the formula into a disjunction of literals, *)
   333 			  | defcnf_from_nnf (Or (And (fm1, fm2), Not (BoolVar i))) =
   303       (*                  adding definitions as necessary                  *)
   334 				And (defcnf_from_nnf (Or (fm1, Not (BoolVar i))),
   304         | defcnf_from_nnf (Or x) =
   335 				     defcnf_from_nnf (Or (fm2, Not (BoolVar i))))
   305             let
   336 			(* all other cases: turn the formula into a disjunction of literals, *)
   306               val (fm, defs) = defcnf_or (Or x)
   337 			(*                  adding definitions as necessary                  *)
   307               val cnf_defs = map defcnf_from_nnf defs
   338 			  | defcnf_from_nnf (Or x) =
   308             in
   339 				let
   309               all (fm :: cnf_defs)
   340 					val (fm, defs) = defcnf_or (Or x)
   310             end
   341 					val cnf_defs   = map defcnf_from_nnf defs
   311       (* 'And' as outermost connective is left untouched *)
   342 				in
   312         | defcnf_from_nnf (And (fm1, fm2)) =
   343 					all (fm :: cnf_defs)
   313             And (defcnf_from_nnf fm1, defcnf_from_nnf fm2)
   344 				end
   314     in
   345 			(* 'And' as outermost connective is left untouched *)
   315       defcnf_from_nnf fm'
   346 			  | defcnf_from_nnf (And (fm1, fm2)) =
   316     end;
   347 				And (defcnf_from_nnf fm1, defcnf_from_nnf fm2)
       
   348 		in
       
   349 			defcnf_from_nnf fm'
       
   350 		end;
       
   351 
   317 
   352 (* ------------------------------------------------------------------------- *)
   318 (* ------------------------------------------------------------------------- *)
   353 (* eval: given an assignment 'a' of Boolean values to variable indices, the  *)
   319 (* eval: given an assignment 'a' of Boolean values to variable indices, the  *)
   354 (*      truth value of a propositional formula 'fm' is computed              *)
   320 (*      truth value of a propositional formula 'fm' is computed              *)
   355 (* ------------------------------------------------------------------------- *)
   321 (* ------------------------------------------------------------------------- *)
   356 
   322 
   357 	(* (int -> bool) -> prop_formula -> bool *)
   323 fun eval a True = true
   358 
   324   | eval a False = false
   359 	fun eval a True            = true
   325   | eval a (BoolVar i) = (a i)
   360 	  | eval a False           = false
   326   | eval a (Not fm) = not (eval a fm)
   361 	  | eval a (BoolVar i)     = (a i)
   327   | eval a (Or (fm1, fm2)) = (eval a fm1) orelse (eval a fm2)
   362 	  | eval a (Not fm)        = not (eval a fm)
   328   | eval a (And (fm1, fm2)) = (eval a fm1) andalso (eval a fm2);
   363 	  | eval a (Or (fm1,fm2))  = (eval a fm1) orelse (eval a fm2)
       
   364 	  | eval a (And (fm1,fm2)) = (eval a fm1) andalso (eval a fm2);
       
   365 
   329 
   366 (* ------------------------------------------------------------------------- *)
   330 (* ------------------------------------------------------------------------- *)
   367 (* prop_formula_of_term: returns the propositional structure of a HOL term,  *)
   331 (* prop_formula_of_term: returns the propositional structure of a HOL term,  *)
   368 (*      with subterms replaced by Boolean variables.  Also returns a table   *)
   332 (*      with subterms replaced by Boolean variables.  Also returns a table   *)
   369 (*      of terms and corresponding variables that extends the table that was *)
   333 (*      of terms and corresponding variables that extends the table that was *)
   376 (*       'prop_formula_of_term' is invoked many times, it might be more      *)
   340 (*       'prop_formula_of_term' is invoked many times, it might be more      *)
   377 (*       efficient to pass and return this value as an additional parameter, *)
   341 (*       efficient to pass and return this value as an additional parameter, *)
   378 (*       so that it does not have to be recomputed (by folding over the      *)
   342 (*       so that it does not have to be recomputed (by folding over the      *)
   379 (*       table) for each invocation.                                         *)
   343 (*       table) for each invocation.                                         *)
   380 
   344 
   381 	(* Term.term -> int Termtab.table -> prop_formula * int Termtab.table *)
   345 fun prop_formula_of_term t table =
   382 	fun prop_formula_of_term t table =
   346   let
   383 	let
   347     val next_idx_is_valid = Unsynchronized.ref false
   384 		val next_idx_is_valid = Unsynchronized.ref false
   348     val next_idx = Unsynchronized.ref 0
   385 		val next_idx          = Unsynchronized.ref 0
   349     fun get_next_idx () =
   386 		fun get_next_idx () =
   350       if !next_idx_is_valid then
   387 			if !next_idx_is_valid then
   351         Unsynchronized.inc next_idx
   388 				Unsynchronized.inc next_idx
   352       else (
   389 			else (
   353         next_idx := Termtab.fold (Integer.max o snd) table 0;
   390 				next_idx := Termtab.fold (Integer.max o snd) table 0;
   354         next_idx_is_valid := true;
   391 				next_idx_is_valid := true;
   355         Unsynchronized.inc next_idx
   392 				Unsynchronized.inc next_idx
   356       )
   393 			)
   357     fun aux (Const (@{const_name True}, _)) table = (True, table)
   394 		fun aux (Const (@{const_name True}, _))         table =
   358       | aux (Const (@{const_name False}, _)) table = (False, table)
   395 			(True, table)
   359       | aux (Const (@{const_name Not}, _) $ x) table = apfst Not (aux x table)
   396 		  | aux (Const (@{const_name False}, _))        table =
   360       | aux (Const (@{const_name HOL.disj}, _) $ x $ y) table =
   397 			(False, table)
   361           let
   398 		  | aux (Const (@{const_name Not}, _) $ x)      table =
   362             val (fm1, table1) = aux x table
   399 			apfst Not (aux x table)
   363             val (fm2, table2) = aux y table1
   400 		  | aux (Const (@{const_name HOL.disj}, _) $ x $ y) table =
   364           in
   401 			let
   365             (Or (fm1, fm2), table2)
   402 				val (fm1, table1) = aux x table
   366           end
   403 				val (fm2, table2) = aux y table1
   367       | aux (Const (@{const_name HOL.conj}, _) $ x $ y) table =
   404 			in
   368           let
   405 				(Or (fm1, fm2), table2)
   369             val (fm1, table1) = aux x table
   406 			end
   370             val (fm2, table2) = aux y table1
   407 		  | aux (Const (@{const_name HOL.conj}, _) $ x $ y) table =
   371           in
   408 			let
   372             (And (fm1, fm2), table2)
   409 				val (fm1, table1) = aux x table
   373           end
   410 				val (fm2, table2) = aux y table1
   374       | aux x table =
   411 			in
   375           (case Termtab.lookup table x of
   412 				(And (fm1, fm2), table2)
   376             SOME i => (BoolVar i, table)
   413 			end
   377           | NONE =>
   414 		  | aux x                           table =
   378               let
   415 			(case Termtab.lookup table x of
   379                 val i = get_next_idx ()
   416 			  SOME i =>
   380               in
   417 				(BoolVar i, table)
   381                 (BoolVar i, Termtab.update (x, i) table)
   418 			| NONE   =>
   382               end)
   419 				let
   383   in
   420 					val i = get_next_idx ()
   384     aux t table
   421 				in
   385   end;
   422 					(BoolVar i, Termtab.update (x, i) table)
       
   423 				end)
       
   424 	in
       
   425 		aux t table
       
   426 	end;
       
   427 
   386 
   428 (* ------------------------------------------------------------------------- *)
   387 (* ------------------------------------------------------------------------- *)
   429 (* term_of_prop_formula: returns a HOL term that corresponds to a            *)
   388 (* term_of_prop_formula: returns a HOL term that corresponds to a            *)
   430 (*      propositional formula, with Boolean variables replaced by Free's     *)
   389 (*      propositional formula, with Boolean variables replaced by Free's     *)
   431 (* ------------------------------------------------------------------------- *)
   390 (* ------------------------------------------------------------------------- *)
   433 (* Note: A more generic implementation should take another argument of type  *)
   392 (* Note: A more generic implementation should take another argument of type  *)
   434 (*       Term.term Inttab.table (or so) that specifies HOL terms for some    *)
   393 (*       Term.term Inttab.table (or so) that specifies HOL terms for some    *)
   435 (*       Boolean variables in the formula, similar to 'prop_formula_of_term' *)
   394 (*       Boolean variables in the formula, similar to 'prop_formula_of_term' *)
   436 (*       (but the other way round).                                          *)
   395 (*       (but the other way round).                                          *)
   437 
   396 
   438 	(* prop_formula -> Term.term *)
   397 fun term_of_prop_formula True = HOLogic.true_const
   439 	fun term_of_prop_formula True             =
   398   | term_of_prop_formula False = HOLogic.false_const
   440 		HOLogic.true_const
   399   | term_of_prop_formula (BoolVar i) = Free ("v" ^ Int.toString i, HOLogic.boolT)
   441 	  | term_of_prop_formula False            =
   400   | term_of_prop_formula (Not fm) = HOLogic.mk_not (term_of_prop_formula fm)
   442 		HOLogic.false_const
   401   | term_of_prop_formula (Or (fm1, fm2)) =
   443 	  | term_of_prop_formula (BoolVar i)      =
   402       HOLogic.mk_disj (term_of_prop_formula fm1, term_of_prop_formula fm2)
   444 		Free ("v" ^ Int.toString i, HOLogic.boolT)
   403   | term_of_prop_formula (And (fm1, fm2)) =
   445 	  | term_of_prop_formula (Not fm)         =
   404       HOLogic.mk_conj (term_of_prop_formula fm1, term_of_prop_formula fm2);
   446 		HOLogic.mk_not (term_of_prop_formula fm)
       
   447 	  | term_of_prop_formula (Or (fm1, fm2))  =
       
   448 		HOLogic.mk_disj (term_of_prop_formula fm1, term_of_prop_formula fm2)
       
   449 	  | term_of_prop_formula (And (fm1, fm2)) =
       
   450 		HOLogic.mk_conj (term_of_prop_formula fm1, term_of_prop_formula fm2);
       
   451 
   405 
   452 end;
   406 end;