src/Doc/Tutorial/Rules/Forward.thy
changeset 48985 5386df44a037
parent 45617 cc0800432333
child 55159 608c157d743d
equal deleted inserted replaced
48984:f51d4a302962 48985:5386df44a037
       
     1 theory Forward imports Primes begin
       
     2 
       
     3 text{*\noindent
       
     4 Forward proof material: of, OF, THEN, simplify, rule_format.
       
     5 *}
       
     6 
       
     7 text{*\noindent
       
     8 SKIP most developments...
       
     9 *}
       
    10 
       
    11 (** Commutativity **)
       
    12 
       
    13 lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
       
    14 apply (auto simp add: is_gcd_def);
       
    15 done
       
    16 
       
    17 lemma gcd_commute: "gcd m n = gcd n m"
       
    18 apply (rule is_gcd_unique)
       
    19 apply (rule is_gcd)
       
    20 apply (subst is_gcd_commute)
       
    21 apply (simp add: is_gcd)
       
    22 done
       
    23 
       
    24 lemma gcd_1 [simp]: "gcd m (Suc 0) = Suc 0"
       
    25 apply simp
       
    26 done
       
    27 
       
    28 lemma gcd_1_left [simp]: "gcd (Suc 0) m = Suc 0"
       
    29 apply (simp add: gcd_commute [of "Suc 0"])
       
    30 done
       
    31 
       
    32 text{*\noindent
       
    33 as far as HERE.
       
    34 *}
       
    35 
       
    36 text{*\noindent
       
    37 SKIP THIS PROOF
       
    38 *}
       
    39 
       
    40 lemma gcd_mult_distrib2: "k * gcd m n = gcd (k*m) (k*n)"
       
    41 apply (induct_tac m n rule: gcd.induct)
       
    42 apply (case_tac "n=0")
       
    43 apply simp
       
    44 apply (case_tac "k=0")
       
    45 apply simp_all
       
    46 done
       
    47 
       
    48 text {*
       
    49 @{thm[display] gcd_mult_distrib2}
       
    50 \rulename{gcd_mult_distrib2}
       
    51 *};
       
    52 
       
    53 text{*\noindent
       
    54 of, simplified
       
    55 *}
       
    56 
       
    57 
       
    58 lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1];
       
    59 lemmas gcd_mult_1 = gcd_mult_0 [simplified];
       
    60 
       
    61 lemmas where1 = gcd_mult_distrib2 [where m=1]
       
    62 
       
    63 lemmas where2 = gcd_mult_distrib2 [where m=1 and k=1]
       
    64 
       
    65 lemmas where3 = gcd_mult_distrib2 [where m=1 and k="j+k"]
       
    66 
       
    67 text {*
       
    68 example using ``of'':
       
    69 @{thm[display] gcd_mult_distrib2 [of _ 1]}
       
    70 
       
    71 example using ``where'':
       
    72 @{thm[display] gcd_mult_distrib2 [where m=1]}
       
    73 
       
    74 example using ``where'', ``and'':
       
    75 @{thm[display] gcd_mult_distrib2 [where m=1 and k="j+k"]}
       
    76 
       
    77 @{thm[display] gcd_mult_0}
       
    78 \rulename{gcd_mult_0}
       
    79 
       
    80 @{thm[display] gcd_mult_1}
       
    81 \rulename{gcd_mult_1}
       
    82 
       
    83 @{thm[display] sym}
       
    84 \rulename{sym}
       
    85 *};
       
    86 
       
    87 lemmas gcd_mult0 = gcd_mult_1 [THEN sym];
       
    88       (*not quite right: we need ?k but this gives k*)
       
    89 
       
    90 lemmas gcd_mult0' = gcd_mult_distrib2 [of k 1, simplified, THEN sym];
       
    91       (*better in one step!*)
       
    92 
       
    93 text {*
       
    94 more legible, and variables properly generalized
       
    95 *};
       
    96 
       
    97 lemma gcd_mult [simp]: "gcd k (k*n) = k"
       
    98 by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])
       
    99 
       
   100 
       
   101 lemmas gcd_self0 = gcd_mult [of k 1, simplified];
       
   102 
       
   103 
       
   104 text {*
       
   105 @{thm[display] gcd_mult}
       
   106 \rulename{gcd_mult}
       
   107 
       
   108 @{thm[display] gcd_self0}
       
   109 \rulename{gcd_self0}
       
   110 *};
       
   111 
       
   112 text {*
       
   113 Rules handy with THEN
       
   114 
       
   115 @{thm[display] iffD1}
       
   116 \rulename{iffD1}
       
   117 
       
   118 @{thm[display] iffD2}
       
   119 \rulename{iffD2}
       
   120 *};
       
   121 
       
   122 
       
   123 text {*
       
   124 again: more legible, and variables properly generalized
       
   125 *};
       
   126 
       
   127 lemma gcd_self [simp]: "gcd k k = k"
       
   128 by (rule gcd_mult [of k 1, simplified])
       
   129 
       
   130 
       
   131 text{*
       
   132 NEXT SECTION: Methods for Forward Proof
       
   133 
       
   134 NEW
       
   135 
       
   136 theorem arg_cong, useful in forward steps
       
   137 @{thm[display] arg_cong[no_vars]}
       
   138 \rulename{arg_cong}
       
   139 *}
       
   140 
       
   141 lemma "2 \<le> u \<Longrightarrow> u*m \<noteq> Suc(u*n)"
       
   142 apply (intro notI)
       
   143 txt{*
       
   144 before using arg_cong
       
   145 @{subgoals[display,indent=0,margin=65]}
       
   146 *};
       
   147 apply (drule_tac f="\<lambda>x. x mod u" in arg_cong)
       
   148 txt{*
       
   149 after using arg_cong
       
   150 @{subgoals[display,indent=0,margin=65]}
       
   151 *};
       
   152 apply (simp add: mod_Suc)
       
   153 done
       
   154 
       
   155 text{*
       
   156 have just used this rule:
       
   157 @{thm[display] mod_Suc[no_vars]}
       
   158 \rulename{mod_Suc}
       
   159 
       
   160 @{thm[display] mult_le_mono1[no_vars]}
       
   161 \rulename{mult_le_mono1}
       
   162 *}
       
   163 
       
   164 
       
   165 text{*
       
   166 example of "insert"
       
   167 *}
       
   168 
       
   169 lemma relprime_dvd_mult: 
       
   170       "\<lbrakk> gcd k n = 1; k dvd m*n \<rbrakk> \<Longrightarrow> k dvd m"
       
   171 apply (insert gcd_mult_distrib2 [of m k n])
       
   172 txt{*@{subgoals[display,indent=0,margin=65]}*}
       
   173 apply simp
       
   174 txt{*@{subgoals[display,indent=0,margin=65]}*}
       
   175 apply (erule_tac t="m" in ssubst);
       
   176 apply simp
       
   177 done
       
   178 
       
   179 
       
   180 text {*
       
   181 @{thm[display] relprime_dvd_mult}
       
   182 \rulename{relprime_dvd_mult}
       
   183 
       
   184 Another example of "insert"
       
   185 
       
   186 @{thm[display] mod_div_equality}
       
   187 \rulename{mod_div_equality}
       
   188 *};
       
   189 
       
   190 (*MOVED to Force.thy, which now depends only on Divides.thy
       
   191 lemma div_mult_self_is_m: "0<n \<Longrightarrow> (m*n) div n = (m::nat)"
       
   192 *)
       
   193 
       
   194 lemma relprime_dvd_mult_iff: "gcd k n = 1 \<Longrightarrow> (k dvd m*n) = (k dvd m)";
       
   195 by (auto intro: relprime_dvd_mult elim: dvdE)
       
   196 
       
   197 lemma relprime_20_81: "gcd 20 81 = 1";
       
   198 by (simp add: gcd.simps)
       
   199 
       
   200 text {*
       
   201 Examples of 'OF'
       
   202 
       
   203 @{thm[display] relprime_dvd_mult}
       
   204 \rulename{relprime_dvd_mult}
       
   205 
       
   206 @{thm[display] relprime_dvd_mult [OF relprime_20_81]}
       
   207 
       
   208 @{thm[display] dvd_refl}
       
   209 \rulename{dvd_refl}
       
   210 
       
   211 @{thm[display] dvd_add}
       
   212 \rulename{dvd_add}
       
   213 
       
   214 @{thm[display] dvd_add [OF dvd_refl dvd_refl]}
       
   215 
       
   216 @{thm[display] dvd_add [OF _ dvd_refl]}
       
   217 *};
       
   218 
       
   219 lemma "\<lbrakk>(z::int) < 37; 66 < 2*z; z*z \<noteq> 1225; Q(34); Q(36)\<rbrakk> \<Longrightarrow> Q(z)";
       
   220 apply (subgoal_tac "z = 34 \<or> z = 36")
       
   221 txt{*
       
   222 the tactic leaves two subgoals:
       
   223 @{subgoals[display,indent=0,margin=65]}
       
   224 *};
       
   225 apply blast
       
   226 apply (subgoal_tac "z \<noteq> 35")
       
   227 txt{*
       
   228 the tactic leaves two subgoals:
       
   229 @{subgoals[display,indent=0,margin=65]}
       
   230 *};
       
   231 apply arith
       
   232 apply force
       
   233 done
       
   234 
       
   235 
       
   236 end