src/HOL/Analysis/Gamma_Function.thy
changeset 68721 53ad5c01be3f
parent 68624 205d352ed727
child 69064 5840724b1d71
equal deleted inserted replaced
68720:1e1818612124 68721:53ad5c01be3f
  1455   using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by blast
  1455   using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by blast
  1456 
  1456 
  1457 lemma holomorphic_rGamma [holomorphic_intros]: "rGamma holomorphic_on A"
  1457 lemma holomorphic_rGamma [holomorphic_intros]: "rGamma holomorphic_on A"
  1458   unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
  1458   unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
  1459 
  1459 
       
  1460 lemma holomorphic_rGamma' [holomorphic_intros]: 
       
  1461   assumes "f holomorphic_on A"
       
  1462   shows   "(\<lambda>x. rGamma (f x)) holomorphic_on A"
       
  1463 proof -
       
  1464   have "rGamma \<circ> f holomorphic_on A" using assms
       
  1465     by (intro holomorphic_on_compose assms holomorphic_rGamma)
       
  1466   thus ?thesis by (simp only: o_def)
       
  1467 qed
       
  1468 
  1460 lemma analytic_rGamma: "rGamma analytic_on A"
  1469 lemma analytic_rGamma: "rGamma analytic_on A"
  1461   unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma)
  1470   unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma)
  1462 
  1471 
  1463 
  1472 
  1464 lemma field_differentiable_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma field_differentiable (at z within A)"
  1473 lemma field_differentiable_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma field_differentiable (at z within A)"
  1465   using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto
  1474   using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto
  1466 
  1475 
  1467 lemma holomorphic_Gamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A"
  1476 lemma holomorphic_Gamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A"
  1468   unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
  1477   unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
       
  1478 
       
  1479 lemma holomorphic_Gamma' [holomorphic_intros]: 
       
  1480   assumes "f holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> f x \<notin> \<int>\<^sub>\<le>\<^sub>0"
       
  1481   shows   "(\<lambda>x. Gamma (f x)) holomorphic_on A"
       
  1482 proof -
       
  1483   have "Gamma \<circ> f holomorphic_on A" using assms
       
  1484     by (intro holomorphic_on_compose assms holomorphic_Gamma) auto
       
  1485   thus ?thesis by (simp only: o_def)
       
  1486 qed
  1469 
  1487 
  1470 lemma analytic_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A"
  1488 lemma analytic_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A"
  1471   by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
  1489   by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
  1472      (auto intro!: holomorphic_Gamma)
  1490      (auto intro!: holomorphic_Gamma)
  1473 
  1491