src/HOL/Library/Univ_Poly.thy
changeset 30488 5c4c3a9e9102
parent 29879 4425849f5db7
child 30738 0842e906300c
equal deleted inserted replaced
30477:5e9248e8e2f8 30488:5c4c3a9e9102
    17 
    17 
    18 subsection{*Arithmetic Operations on Polynomials*}
    18 subsection{*Arithmetic Operations on Polynomials*}
    19 
    19 
    20 text{*addition*}
    20 text{*addition*}
    21 
    21 
    22 primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"  (infixl "+++" 65) 
    22 primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"  (infixl "+++" 65)
    23 where
    23 where
    24   padd_Nil:  "[] +++ l2 = l2"
    24   padd_Nil:  "[] +++ l2 = l2"
    25 | padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
    25 | padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
    26                             else (h + hd l2)#(t +++ tl l2))"
    26                             else (h + hd l2)#(t +++ tl l2))"
    27 
    27 
    77 definition (in ring_1) order :: "'a => 'a list => nat" where
    77 definition (in ring_1) order :: "'a => 'a list => nat" where
    78   "order a p = (SOME n. ([-a, 1] %^ n) divides p &
    78   "order a p = (SOME n. ([-a, 1] %^ n) divides p &
    79                       ~ (([-a, 1] %^ (Suc n)) divides p))"
    79                       ~ (([-a, 1] %^ (Suc n)) divides p))"
    80 
    80 
    81      --{*degree of a polynomial*}
    81      --{*degree of a polynomial*}
    82 definition (in semiring_0) degree :: "'a list => nat" where 
    82 definition (in semiring_0) degree :: "'a list => nat" where
    83   "degree p = length (pnormalize p) - 1"
    83   "degree p = length (pnormalize p) - 1"
    84 
    84 
    85      --{*squarefree polynomials --- NB with respect to real roots only.*}
    85      --{*squarefree polynomials --- NB with respect to real roots only.*}
    86 definition (in ring_1)
    86 definition (in ring_1)
    87   rsquarefree :: "'a list => bool" where
    87   rsquarefree :: "'a list => bool" where
   138 
   138 
   139 lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
   139 lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
   140 proof(induct p1 arbitrary: p2)
   140 proof(induct p1 arbitrary: p2)
   141   case Nil thus ?case by simp
   141   case Nil thus ?case by simp
   142 next
   142 next
   143   case (Cons a as p2) thus ?case 
   143   case (Cons a as p2) thus ?case
   144     by (cases p2, simp_all  add: add_ac right_distrib)
   144     by (cases p2, simp_all  add: add_ac right_distrib)
   145 qed
   145 qed
   146 
   146 
   147 lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
   147 lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
   148 apply (induct "p") 
   148 apply (induct "p")
   149 apply (case_tac [2] "x=zero")
   149 apply (case_tac [2] "x=zero")
   150 apply (auto simp add: right_distrib mult_ac)
   150 apply (auto simp add: right_distrib mult_ac)
   151 done
   151 done
   152 
   152 
   153 lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x"
   153 lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x"
   161 lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
   161 lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
   162 proof(induct p1 arbitrary: p2)
   162 proof(induct p1 arbitrary: p2)
   163   case Nil thus ?case by simp
   163   case Nil thus ?case by simp
   164 next
   164 next
   165   case (Cons a as p2)
   165   case (Cons a as p2)
   166   thus ?case by (cases as, 
   166   thus ?case by (cases as,
   167     simp_all add: poly_cmult poly_add left_distrib right_distrib mult_ac)
   167     simp_all add: poly_cmult poly_add left_distrib right_distrib mult_ac)
   168 qed
   168 qed
   169 
   169 
   170 class recpower_semiring = semiring + recpower
   170 class recpower_semiring = semiring + recpower
   171 class recpower_semiring_1 = semiring_1 + recpower
   171 class recpower_semiring_1 = semiring_1 + recpower
   211   case Nil
   211   case Nil
   212   {fix h have "[h] = [h] +++ [- a, 1] *** []" by simp}
   212   {fix h have "[h] = [h] +++ [- a, 1] *** []" by simp}
   213   thus ?case by blast
   213   thus ?case by blast
   214 next
   214 next
   215   case (Cons  x xs)
   215   case (Cons  x xs)
   216   {fix h 
   216   {fix h
   217     from Cons.hyps[rule_format, of x] 
   217     from Cons.hyps[rule_format, of x]
   218     obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
   218     obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
   219     have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)" 
   219     have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)"
   220       using qr by(cases q, simp_all add: algebra_simps diff_def[symmetric] 
   220       using qr by(cases q, simp_all add: algebra_simps diff_def[symmetric]
   221 	minus_mult_left[symmetric] right_minus)
   221 	minus_mult_left[symmetric] right_minus)
   222     hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
   222     hence "\<exists>q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast}
   223   thus ?case by blast
   223   thus ?case by blast
   224 qed
   224 qed
   225 
   225 
   230 lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"
   230 lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"
   231 proof-
   231 proof-
   232   {assume p: "p = []" hence ?thesis by simp}
   232   {assume p: "p = []" hence ?thesis by simp}
   233   moreover
   233   moreover
   234   {fix x xs assume p: "p = x#xs"
   234   {fix x xs assume p: "p = x#xs"
   235     {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0" 
   235     {fix q assume "p = [-a, 1] *** q" hence "poly p a = 0"
   236 	by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
   236 	by (simp add: poly_add poly_cmult minus_mult_left[symmetric])}
   237     moreover
   237     moreover
   238     {assume p0: "poly p a = 0"
   238     {assume p0: "poly p a = 0"
   239       from poly_linear_rem[of x xs a] obtain q r 
   239       from poly_linear_rem[of x xs a] obtain q r
   240       where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
   240       where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast
   241       have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp
   241       have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp
   242       hence "\<exists>q. p = [- a, 1] *** q" using p qr  apply - apply (rule exI[where x=q])apply auto apply (cases q) apply auto done}
   242       hence "\<exists>q. p = [- a, 1] *** q" using p qr  apply - apply (rule exI[where x=q])apply auto apply (cases q) apply auto done}
   243     ultimately have ?thesis using p by blast}
   243     ultimately have ?thesis using p by blast}
   244   ultimately show ?thesis by (cases p, auto)
   244   ultimately show ?thesis by (cases p, auto)
   264 done
   264 done
   265 
   265 
   266 lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)"
   266 lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)"
   267 by (simp add: poly_add_length)
   267 by (simp add: poly_add_length)
   268 
   268 
   269 lemma (in idom) poly_mult_not_eq_poly_Nil[simp]: 
   269 lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
   270  "poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x"
   270  "poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x"
   271 by (auto simp add: poly_mult)
   271 by (auto simp add: poly_mult)
   272 
   272 
   273 lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0"
   273 lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0"
   274 by (auto simp add: poly_mult)
   274 by (auto simp add: poly_mult)
   278 lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"
   278 lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"
   279 by (induct "p", auto)
   279 by (induct "p", auto)
   280 
   280 
   281 text{*A nontrivial polynomial of degree n has no more than n roots*}
   281 text{*A nontrivial polynomial of degree n has no more than n roots*}
   282 lemma (in idom) poly_roots_index_lemma:
   282 lemma (in idom) poly_roots_index_lemma:
   283    assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n" 
   283    assumes p: "poly p x \<noteq> poly [] x" and n: "length p = n"
   284   shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)"
   284   shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)"
   285   using p n
   285   using p n
   286 proof(induct n arbitrary: p x)
   286 proof(induct n arbitrary: p x)
   287   case 0 thus ?case by simp 
   287   case 0 thus ?case by simp
   288 next
   288 next
   289   case (Suc n p x)
   289   case (Suc n p x)
   290   {assume C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)"
   290   {assume C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)"
   291     from Suc.prems have p0: "poly p x \<noteq> 0" "p\<noteq> []" by auto
   291     from Suc.prems have p0: "poly p x \<noteq> 0" "p\<noteq> []" by auto
   292     from p0(1)[unfolded poly_linear_divides[of p x]] 
   292     from p0(1)[unfolded poly_linear_divides[of p x]]
   293     have "\<forall>q. p \<noteq> [- x, 1] *** q" by blast
   293     have "\<forall>q. p \<noteq> [- x, 1] *** q" by blast
   294     from C obtain a where a: "poly p a = 0" by blast
   294     from C obtain a where a: "poly p a = 0" by blast
   295     from a[unfolded poly_linear_divides[of p a]] p0(2) 
   295     from a[unfolded poly_linear_divides[of p a]] p0(2)
   296     obtain q where q: "p = [-a, 1] *** q" by blast
   296     obtain q where q: "p = [-a, 1] *** q" by blast
   297     have lg: "length q = n" using q Suc.prems(2) by simp
   297     have lg: "length q = n" using q Suc.prems(2) by simp
   298     from q p0 have qx: "poly q x \<noteq> poly [] x" 
   298     from q p0 have qx: "poly q x \<noteq> poly [] x"
   299       by (auto simp add: poly_mult poly_add poly_cmult)
   299       by (auto simp add: poly_mult poly_add poly_cmult)
   300     from Suc.hyps[OF qx lg] obtain i where 
   300     from Suc.hyps[OF qx lg] obtain i where
   301       i: "\<forall>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" by blast
   301       i: "\<forall>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" by blast
   302     let ?i = "\<lambda>m. if m = Suc n then a else i m"
   302     let ?i = "\<lambda>m. if m = Suc n then a else i m"
   303     from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m" 
   303     from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m"
   304       by blast
   304       by blast
   305     from y have "y = a \<or> poly q y = 0" 
   305     from y have "y = a \<or> poly q y = 0"
   306       by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps)
   306       by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps)
   307     with i[rule_format, of y] y(1) y(2) have False apply auto 
   307     with i[rule_format, of y] y(1) y(2) have False apply auto
   308       apply (erule_tac x="m" in allE)
   308       apply (erule_tac x="m" in allE)
   309       apply auto
   309       apply auto
   310       done}
   310       done}
   311   thus ?case by blast
   311   thus ?case by blast
   312 qed
   312 qed
   318 
   318 
   319 lemma (in idom) poly_roots_finite_lemma1: "poly p x \<noteq> poly [] x ==>
   319 lemma (in idom) poly_roots_finite_lemma1: "poly p x \<noteq> poly [] x ==>
   320       \<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"
   320       \<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"
   321 apply (drule poly_roots_index_length, safe)
   321 apply (drule poly_roots_index_length, safe)
   322 apply (rule_tac x = "Suc (length p)" in exI)
   322 apply (rule_tac x = "Suc (length p)" in exI)
   323 apply (rule_tac x = i in exI) 
   323 apply (rule_tac x = i in exI)
   324 apply (simp add: less_Suc_eq_le)
   324 apply (simp add: less_Suc_eq_le)
   325 done
   325 done
   326 
   326 
   327 
   327 
   328 lemma (in idom) idom_finite_lemma:
   328 lemma (in idom) idom_finite_lemma:
   342 apply (rule_tac x="map (\<lambda>n. i n) [0 ..< Suc (length p)]" in exI)
   342 apply (rule_tac x="map (\<lambda>n. i n) [0 ..< Suc (length p)]" in exI)
   343 apply (auto simp add: image_iff)
   343 apply (auto simp add: image_iff)
   344 apply (erule_tac x="x" in allE, clarsimp)
   344 apply (erule_tac x="x" in allE, clarsimp)
   345 by (case_tac "n=length p", auto simp add: order_le_less)
   345 by (case_tac "n=length p", auto simp add: order_le_less)
   346 
   346 
   347 lemma (in ring_char_0) UNIV_ring_char_0_infinte: 
   347 lemma (in ring_char_0) UNIV_ring_char_0_infinte:
   348   "\<not> (finite (UNIV:: 'a set))" 
   348   "\<not> (finite (UNIV:: 'a set))"
   349 proof
   349 proof
   350   assume F: "finite (UNIV :: 'a set)"
   350   assume F: "finite (UNIV :: 'a set)"
   351   have "finite (UNIV :: nat set)"
   351   have "finite (UNIV :: nat set)"
   352   proof (rule finite_imageD)
   352   proof (rule finite_imageD)
   353     have "of_nat ` UNIV \<subseteq> UNIV" by simp
   353     have "of_nat ` UNIV \<subseteq> UNIV" by simp
   355     show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: inj_on_def)
   355     show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: inj_on_def)
   356   qed
   356   qed
   357   with infinite_UNIV_nat show False ..
   357   with infinite_UNIV_nat show False ..
   358 qed
   358 qed
   359 
   359 
   360 lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) = 
   360 lemma (in idom_char_0) poly_roots_finite: "(poly p \<noteq> poly []) =
   361   finite {x. poly p x = 0}"
   361   finite {x. poly p x = 0}"
   362 proof
   362 proof
   363   assume H: "poly p \<noteq> poly []"
   363   assume H: "poly p \<noteq> poly []"
   364   show "finite {x. poly p x = (0::'a)}"
   364   show "finite {x. poly p x = (0::'a)}"
   365     using H
   365     using H
   368     apply (rule ccontr)
   368     apply (rule ccontr)
   369     apply (clarify dest!: poly_roots_finite_lemma2)
   369     apply (clarify dest!: poly_roots_finite_lemma2)
   370     using finite_subset
   370     using finite_subset
   371   proof-
   371   proof-
   372     fix x i
   372     fix x i
   373     assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}" 
   373     assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}"
   374       and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"
   374       and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"
   375     let ?M= "{x. poly p x = (0\<Colon>'a)}"
   375     let ?M= "{x. poly p x = (0\<Colon>'a)}"
   376     from P have "?M \<subseteq> set i" by auto
   376     from P have "?M \<subseteq> set i" by auto
   377     with finite_subset F show False by auto
   377     with finite_subset F show False by auto
   378   qed
   378   qed
   379 next
   379 next
   380   assume F: "finite {x. poly p x = (0\<Colon>'a)}"
   380   assume F: "finite {x. poly p x = (0\<Colon>'a)}"
   381   show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto  
   381   show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto
   382 qed
   382 qed
   383 
   383 
   384 text{*Entirety and Cancellation for polynomials*}
   384 text{*Entirety and Cancellation for polynomials*}
   385 
   385 
   386 lemma (in idom_char_0) poly_entire_lemma2: 
   386 lemma (in idom_char_0) poly_entire_lemma2:
   387   assumes p0: "poly p \<noteq> poly []" and q0: "poly q \<noteq> poly []"
   387   assumes p0: "poly p \<noteq> poly []" and q0: "poly q \<noteq> poly []"
   388   shows "poly (p***q) \<noteq> poly []"
   388   shows "poly (p***q) \<noteq> poly []"
   389 proof-
   389 proof-
   390   let ?S = "\<lambda>p. {x. poly p x = 0}"
   390   let ?S = "\<lambda>p. {x. poly p x = 0}"
   391   have "?S (p *** q) = ?S p \<union> ?S q" by (auto simp add: poly_mult)
   391   have "?S (p *** q) = ?S p \<union> ?S q" by (auto simp add: poly_mult)
   392   with p0 q0 show ?thesis  unfolding poly_roots_finite by auto
   392   with p0 q0 show ?thesis  unfolding poly_roots_finite by auto
   393 qed
   393 qed
   394 
   394 
   395 lemma (in idom_char_0) poly_entire: 
   395 lemma (in idom_char_0) poly_entire:
   396   "poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
   396   "poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []"
   397 using poly_entire_lemma2[of p q]
   397 using poly_entire_lemma2[of p q]
   398 by (auto simp add: expand_fun_eq poly_mult)
   398 by (auto simp add: expand_fun_eq poly_mult)
   399 
   399 
   400 lemma (in idom_char_0) poly_entire_neg: "(poly (p *** q) \<noteq> poly []) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
   400 lemma (in idom_char_0) poly_entire_neg: "(poly (p *** q) \<noteq> poly []) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
   418   finally show ?thesis .
   418   finally show ?thesis .
   419 qed
   419 qed
   420 
   420 
   421 lemma (in recpower_idom) poly_exp_eq_zero[simp]:
   421 lemma (in recpower_idom) poly_exp_eq_zero[simp]:
   422      "(poly (p %^ n) = poly []) = (poly p = poly [] & n \<noteq> 0)"
   422      "(poly (p %^ n) = poly []) = (poly p = poly [] & n \<noteq> 0)"
   423 apply (simp only: fun_eq add: all_simps [symmetric]) 
   423 apply (simp only: fun_eq add: all_simps [symmetric])
   424 apply (rule arg_cong [where f = All]) 
   424 apply (rule arg_cong [where f = All])
   425 apply (rule ext)
   425 apply (rule ext)
   426 apply (induct n)
   426 apply (induct n)
   427 apply (auto simp add: poly_exp poly_mult)
   427 apply (auto simp add: poly_exp poly_mult)
   428 done
   428 done
   429 
   429 
   433 apply (rule_tac x = "minus one a" in exI)
   433 apply (rule_tac x = "minus one a" in exI)
   434 apply (unfold diff_minus)
   434 apply (unfold diff_minus)
   435 apply (subst add_commute)
   435 apply (subst add_commute)
   436 apply (subst add_assoc)
   436 apply (subst add_assoc)
   437 apply simp
   437 apply simp
   438 done 
   438 done
   439 
   439 
   440 lemma (in recpower_idom) poly_exp_prime_eq_zero: "(poly ([a, 1] %^ n) \<noteq> poly [])"
   440 lemma (in recpower_idom) poly_exp_prime_eq_zero: "(poly ([a, 1] %^ n) \<noteq> poly [])"
   441 by auto
   441 by auto
   442 
   442 
   443 text{*A more constructive notion of polynomials being trivial*}
   443 text{*A more constructive notion of polynomials being trivial*}
   444 
   444 
   445 lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"
   445 lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"
   446 apply(simp add: fun_eq)
   446 apply(simp add: fun_eq)
   447 apply (case_tac "h = zero")
   447 apply (case_tac "h = zero")
   448 apply (drule_tac [2] x = zero in spec, auto) 
   448 apply (drule_tac [2] x = zero in spec, auto)
   449 apply (cases "poly t = poly []", simp) 
   449 apply (cases "poly t = poly []", simp)
   450 proof-
   450 proof-
   451   fix x
   451   fix x
   452   assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)"  and pnz: "poly t \<noteq> poly []"
   452   assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)"  and pnz: "poly t \<noteq> poly []"
   453   let ?S = "{x. poly t x = 0}"
   453   let ?S = "{x. poly t x = 0}"
   454   from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast
   454   from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast
   561 next
   561 next
   562   case (Suc n p)
   562   case (Suc n p)
   563   {assume p0: "poly p a = 0"
   563   {assume p0: "poly p a = 0"
   564     from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" by auto
   564     from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" by auto
   565     hence pN: "p \<noteq> []" by auto
   565     hence pN: "p \<noteq> []" by auto
   566     from p0[unfolded poly_linear_divides] pN  obtain q where 
   566     from p0[unfolded poly_linear_divides] pN  obtain q where
   567       q: "p = [-a, 1] *** q" by blast
   567       q: "p = [-a, 1] *** q" by blast
   568     from q h p0 have qh: "length q = n" "poly q \<noteq> poly []" 
   568     from q h p0 have qh: "length q = n" "poly q \<noteq> poly []"
   569       apply -
   569       apply -
   570       apply simp
   570       apply simp
   571       apply (simp only: fun_eq)
   571       apply (simp only: fun_eq)
   572       apply (rule ccontr)
   572       apply (rule ccontr)
   573       apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
   573       apply (simp add: fun_eq poly_add poly_cmult minus_mult_left[symmetric])
   574       done
   574       done
   575     from Suc.hyps[OF qh] obtain m r where 
   575     from Suc.hyps[OF qh] obtain m r where
   576       mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast    
   576       mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" by blast
   577     from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" by simp
   577     from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" by simp
   578     hence ?case by blast}
   578     hence ?case by blast}
   579   moreover
   579   moreover
   580   {assume p0: "poly p a \<noteq> 0"
   580   {assume p0: "poly p a \<noteq> 0"
   581     hence ?case using Suc.prems apply simp by (rule exI[where x="0::nat"], simp)}
   581     hence ?case using Suc.prems apply simp by (rule exI[where x="0::nat"], simp)}
   598 
   598 
   599 
   599 
   600 
   600 
   601 (* FIXME: Tidy up *)
   601 (* FIXME: Tidy up *)
   602 
   602 
   603 lemma (in recpower_semiring_1) 
   603 lemma (in recpower_semiring_1)
   604   zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
   604   zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
   605   by (induct n, simp_all add: power_Suc)
   605   by (induct n, simp_all add: power_Suc)
   606 
   606 
   607 lemma (in recpower_idom_char_0) poly_order_exists:
   607 lemma (in recpower_idom_char_0) poly_order_exists:
   608   assumes lp: "length p = d" and p0: "poly p \<noteq> poly []"
   608   assumes lp: "length p = d" and p0: "poly p \<noteq> poly []"
   612 let ?mulexp = mulexp
   612 let ?mulexp = mulexp
   613 let ?pexp = pexp
   613 let ?pexp = pexp
   614 from lp p0
   614 from lp p0
   615 show ?thesis
   615 show ?thesis
   616 apply -
   616 apply -
   617 apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)  
   617 apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
   618 apply (rule_tac x = n in exI, safe)
   618 apply (rule_tac x = n in exI, safe)
   619 apply (unfold divides_def)
   619 apply (unfold divides_def)
   620 apply (rule_tac x = q in exI)
   620 apply (rule_tac x = q in exI)
   621 apply (induct_tac "n", simp)
   621 apply (induct_tac "n", simp)
   622 apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)
   622 apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)
   623 apply safe
   623 apply safe
   624 apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)") 
   624 apply (subgoal_tac "?poly (?mulexp n [uminus a, one] q) \<noteq> ?poly (pmult (?pexp [uminus a, one] (Suc n)) qa)")
   625 apply simp 
   625 apply simp
   626 apply (induct_tac "n")
   626 apply (induct_tac "n")
   627 apply (simp del: pmult_Cons pexp_Suc)
   627 apply (simp del: pmult_Cons pexp_Suc)
   628 apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
   628 apply (erule_tac Q = "?poly q a = zero" in contrapos_np)
   629 apply (simp add: poly_add poly_cmult minus_mult_left[symmetric])
   629 apply (simp add: poly_add poly_cmult minus_mult_left[symmetric])
   630 apply (rule pexp_Suc [THEN ssubst])
   630 apply (rule pexp_Suc [THEN ssubst])
   668 by (simp add: order del: pexp_Suc)
   668 by (simp add: order del: pexp_Suc)
   669 
   669 
   670 lemma (in recpower_idom_char_0) order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
   670 lemma (in recpower_idom_char_0) order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
   671          ~(([-a, 1] %^ (Suc n)) divides p)
   671          ~(([-a, 1] %^ (Suc n)) divides p)
   672       |] ==> (n = order a p)"
   672       |] ==> (n = order a p)"
   673 by (insert order [of a n p], auto) 
   673 by (insert order [of a n p], auto)
   674 
   674 
   675 lemma (in recpower_idom_char_0) order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
   675 lemma (in recpower_idom_char_0) order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
   676          ~(([-a, 1] %^ (Suc n)) divides p))
   676          ~(([-a, 1] %^ (Suc n)) divides p))
   677       ==> (n = order a p)"
   677       ==> (n = order a p)"
   678 by (blast intro: order_unique)
   678 by (blast intro: order_unique)
   693 done
   693 done
   694 
   694 
   695 lemma (in recpower_idom_char_0) order_root: "(poly p a = 0) = ((poly p = poly []) | order a p \<noteq> 0)"
   695 lemma (in recpower_idom_char_0) order_root: "(poly p a = 0) = ((poly p = poly []) | order a p \<noteq> 0)"
   696 proof-
   696 proof-
   697   let ?poly = poly
   697   let ?poly = poly
   698   show ?thesis 
   698   show ?thesis
   699 apply (case_tac "?poly p = ?poly []", auto)
   699 apply (case_tac "?poly p = ?poly []", auto)
   700 apply (simp add: poly_linear_divides del: pmult_Cons, safe)
   700 apply (simp add: poly_linear_divides del: pmult_Cons, safe)
   701 apply (drule_tac [!] a = a in order2)
   701 apply (drule_tac [!] a = a in order2)
   702 apply (rule ccontr)
   702 apply (rule ccontr)
   703 apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)
   703 apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)
   707 qed
   707 qed
   708 
   708 
   709 lemma (in recpower_idom_char_0) order_divides: "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
   709 lemma (in recpower_idom_char_0) order_divides: "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
   710 proof-
   710 proof-
   711   let ?poly = poly
   711   let ?poly = poly
   712   show ?thesis 
   712   show ?thesis
   713 apply (case_tac "?poly p = ?poly []", auto)
   713 apply (case_tac "?poly p = ?poly []", auto)
   714 apply (simp add: divides_def fun_eq poly_mult)
   714 apply (simp add: divides_def fun_eq poly_mult)
   715 apply (rule_tac x = "[]" in exI)
   715 apply (rule_tac x = "[]" in exI)
   716 apply (auto dest!: order2 [where a=a]
   716 apply (auto dest!: order2 [where a=a]
   717 	    intro: poly_exp_divides simp del: pexp_Suc)
   717 	    intro: poly_exp_divides simp del: pexp_Suc)
   751 apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
   751 apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
   752 apply (drule poly_mult_left_cancel [THEN iffD1], force)
   752 apply (drule poly_mult_left_cancel [THEN iffD1], force)
   753 apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
   753 apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
   754 done
   754 done
   755 
   755 
   756 lemma (in recpower_idom_char_0) order_mult: 
   756 lemma (in recpower_idom_char_0) order_mult:
   757   assumes pq0: "poly (p *** q) \<noteq> poly []"
   757   assumes pq0: "poly (p *** q) \<noteq> poly []"
   758   shows "order a (p *** q) = order a p + order a q"
   758   shows "order a (p *** q) = order a p + order a q"
   759 proof-
   759 proof-
   760   let ?order = order
   760   let ?order = order
   761   let ?divides = "op divides"
   761   let ?divides = "op divides"
   762   let ?poly = poly
   762   let ?poly = poly
   763 from pq0 
   763 from pq0
   764 show ?thesis
   764 show ?thesis
   765 apply (cut_tac a = a and p = "pmult p q" and n = "?order a p + ?order a q" in order)
   765 apply (cut_tac a = a and p = "pmult p q" and n = "?order a p + ?order a q" in order)
   766 apply (auto simp add: poly_entire simp del: pmult_Cons)
   766 apply (auto simp add: poly_entire simp del: pmult_Cons)
   767 apply (drule_tac a = a in order2)+
   767 apply (drule_tac a = a in order2)+
   768 apply safe
   768 apply safe
   819 
   819 
   820 lemma (in semiring_0) lemma_degree_zero:
   820 lemma (in semiring_0) lemma_degree_zero:
   821      "list_all (%c. c = 0) p \<longleftrightarrow>  pnormalize p = []"
   821      "list_all (%c. c = 0) p \<longleftrightarrow>  pnormalize p = []"
   822 by (induct "p", auto)
   822 by (induct "p", auto)
   823 
   823 
   824 lemma (in idom_char_0) degree_zero: 
   824 lemma (in idom_char_0) degree_zero:
   825   assumes pN: "poly p = poly []" shows"degree p = 0"
   825   assumes pN: "poly p = poly []" shows"degree p = 0"
   826 proof-
   826 proof-
   827   let ?pn = pnormalize
   827   let ?pn = pnormalize
   828   from pN
   828   from pN
   829   show ?thesis 
   829   show ?thesis
   830     apply (simp add: degree_def)
   830     apply (simp add: degree_def)
   831     apply (case_tac "?pn p = []")
   831     apply (case_tac "?pn p = []")
   832     apply (auto simp add: poly_zero lemma_degree_zero )
   832     apply (auto simp add: poly_zero lemma_degree_zero )
   833     done
   833     done
   834 qed
   834 qed
   835 
   835 
   836 lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
   836 lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
   837 lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
   837 lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
   838 lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)" 
   838 lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
   839   unfolding pnormal_def by simp
   839   unfolding pnormal_def by simp
   840 lemma (in semiring_0) pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
   840 lemma (in semiring_0) pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
   841   unfolding pnormal_def 
   841   unfolding pnormal_def
   842   apply (cases "pnormalize p = []", auto)
   842   apply (cases "pnormalize p = []", auto)
   843   by (cases "c = 0", auto)
   843   by (cases "c = 0", auto)
   844 
   844 
   845 
   845 
   846 lemma (in semiring_0) pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
   846 lemma (in semiring_0) pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
   847 proof(induct p)
   847 proof(induct p)
   848   case Nil thus ?case by (simp add: pnormal_def)
   848   case Nil thus ?case by (simp add: pnormal_def)
   849 next 
   849 next
   850   case (Cons a as) thus ?case
   850   case (Cons a as) thus ?case
   851     apply (simp add: pnormal_def)
   851     apply (simp add: pnormal_def)
   852     apply (cases "pnormalize as = []", simp_all)
   852     apply (cases "pnormalize as = []", simp_all)
   853     apply (cases "as = []", simp_all)
   853     apply (cases "as = []", simp_all)
   854     apply (cases "a=0", simp_all)
   854     apply (cases "a=0", simp_all)
   875     by (simp only: poly_minus poly_add algebra_simps) simp
   875     by (simp only: poly_minus poly_add algebra_simps) simp
   876   hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add:expand_fun_eq)
   876   hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add:expand_fun_eq)
   877   hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
   877   hence "c = d \<and> list_all (\<lambda>x. x=0) ((cs +++ -- ds))"
   878     unfolding poly_zero by (simp add: poly_minus_def algebra_simps)
   878     unfolding poly_zero by (simp add: poly_minus_def algebra_simps)
   879   hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
   879   hence "c = d \<and> (\<forall>x. poly (cs +++ -- ds) x = 0)"
   880     unfolding poly_zero[symmetric] by simp 
   880     unfolding poly_zero[symmetric] by simp
   881   thus ?rhs  by (simp add: poly_minus poly_add algebra_simps expand_fun_eq)
   881   thus ?rhs  by (simp add: poly_minus poly_add algebra_simps expand_fun_eq)
   882 next
   882 next
   883   assume ?rhs then show ?lhs by(simp add:expand_fun_eq)
   883   assume ?rhs then show ?lhs by(simp add:expand_fun_eq)
   884 qed
   884 qed
   885   
   885 
   886 lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
   886 lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q"
   887 proof(induct q arbitrary: p)
   887 proof(induct q arbitrary: p)
   888   case Nil thus ?case by (simp only: poly_zero lemma_degree_zero) simp
   888   case Nil thus ?case by (simp only: poly_zero lemma_degree_zero) simp
   889 next
   889 next
   890   case (Cons c cs p)
   890   case (Cons c cs p)
   891   thus ?case
   891   thus ?case
   892   proof(induct p)
   892   proof(induct p)
   893     case Nil
   893     case Nil
   894     hence "poly [] = poly (c#cs)" by blast
   894     hence "poly [] = poly (c#cs)" by blast
   895     then have "poly (c#cs) = poly [] " by simp 
   895     then have "poly (c#cs) = poly [] " by simp
   896     thus ?case by (simp only: poly_zero lemma_degree_zero) simp
   896     thus ?case by (simp only: poly_zero lemma_degree_zero) simp
   897   next
   897   next
   898     case (Cons d ds)
   898     case (Cons d ds)
   899     hence eq: "poly (d # ds) = poly (c # cs)" by blast
   899     hence eq: "poly (d # ds) = poly (c # cs)" by blast
   900     hence eq': "\<And>x. poly (d # ds) x = poly (c # cs) x" by simp
   900     hence eq': "\<And>x. poly (d # ds) x = poly (c # cs) x" by simp
   911   shows "degree p = degree q"
   911   shows "degree p = degree q"
   912 using pnormalize_unique[OF pq] unfolding degree_def by simp
   912 using pnormalize_unique[OF pq] unfolding degree_def by simp
   913 
   913 
   914 lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" by (induct p, auto)
   914 lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" by (induct p, auto)
   915 
   915 
   916 lemma (in semiring_0) last_linear_mul_lemma: 
   916 lemma (in semiring_0) last_linear_mul_lemma:
   917   "last ((a %* p) +++ (x#(b %* p))) = (if p=[] then x else b*last p)"
   917   "last ((a %* p) +++ (x#(b %* p))) = (if p=[] then x else b*last p)"
   918 
   918 
   919 apply (induct p arbitrary: a x b, auto)
   919 apply (induct p arbitrary: a x b, auto)
   920 apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \<noteq> []", simp)
   920 apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \<noteq> []", simp)
   921 apply (induct_tac p, auto)
   921 apply (induct_tac p, auto)
   946 lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \<noteq> poly []"
   946 lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \<noteq> poly []"
   947   shows "degree ([a,1] *** p) = degree p + 1"
   947   shows "degree ([a,1] *** p) = degree p + 1"
   948 proof-
   948 proof-
   949   from p have pnz: "pnormalize p \<noteq> []"
   949   from p have pnz: "pnormalize p \<noteq> []"
   950     unfolding poly_zero lemma_degree_zero .
   950     unfolding poly_zero lemma_degree_zero .
   951   
   951 
   952   from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
   952   from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
   953   have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp
   953   have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp
   954   from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
   954   from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
   955     pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
   955     pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
   956  
   956 
   957 
   957 
   958   have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" 
   958   have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
   959     by (auto simp add: poly_length_mult)
   959     by (auto simp add: poly_length_mult)
   960 
   960 
   961   have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
   961   have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
   962     by (rule ext) (simp add: poly_mult poly_add poly_cmult)
   962     by (rule ext) (simp add: poly_mult poly_add poly_cmult)
   963   from degree_unique[OF eqs] th
   963   from degree_unique[OF eqs] th
   978   have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))"
   978   have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))"
   979     apply (rule ext, simp add: poly_mult poly_add poly_cmult)
   979     apply (rule ext, simp add: poly_mult poly_add poly_cmult)
   980     by (simp add: mult_ac add_ac right_distrib)
   980     by (simp add: mult_ac add_ac right_distrib)
   981   note deq = degree_unique[OF eq]
   981   note deq = degree_unique[OF eq]
   982   {assume p: "poly p = poly []"
   982   {assume p: "poly p = poly []"
   983     with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []" 
   983     with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []"
   984       by - (rule ext,simp add: poly_mult poly_cmult poly_add)
   984       by - (rule ext,simp add: poly_mult poly_cmult poly_add)
   985     from degree_unique[OF eq'] p have ?case by (simp add: degree_def)}
   985     from degree_unique[OF eq'] p have ?case by (simp add: degree_def)}
   986   moreover
   986   moreover
   987   {assume p: "poly p \<noteq> poly []"
   987   {assume p: "poly p \<noteq> poly []"
   988     from p have ap: "poly ([a,1] *** p) \<noteq> poly []"
   988     from p have ap: "poly ([a,1] *** p) \<noteq> poly []"
   989       using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto 
   989       using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
   990     have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))"
   990     have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))"
   991      by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps)
   991      by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps)
   992    from ap have ap': "(poly ([a,1] *** p) = poly []) = False" by blast
   992    from ap have ap': "(poly ([a,1] *** p) = poly []) = False" by blast
   993    have  th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n"
   993    have  th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n"
   994      apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
   994      apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
   995      by simp
   995      by simp
   996     
   996 
   997    from degree_unique[OF eq] ap p th0 linear_mul_degree[OF p, of a]
   997    from degree_unique[OF eq] ap p th0 linear_mul_degree[OF p, of a]
   998    have ?case by (auto simp del: poly.simps)}
   998    have ?case by (auto simp del: poly.simps)}
   999   ultimately show ?case by blast
   999   ultimately show ?case by blast
  1000 qed
  1000 qed
  1001 
  1001 
  1002 lemma (in recpower_idom_char_0) order_degree: 
  1002 lemma (in recpower_idom_char_0) order_degree:
  1003   assumes p0: "poly p \<noteq> poly []"
  1003   assumes p0: "poly p \<noteq> poly []"
  1004   shows "order a p \<le> degree p"
  1004   shows "order a p \<le> degree p"
  1005 proof-
  1005 proof-
  1006   from order2[OF p0, unfolded divides_def]
  1006   from order2[OF p0, unfolded divides_def]
  1007   obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast
  1007   obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast
  1008   {assume "poly q = poly []"
  1008   {assume "poly q = poly []"
  1009     with q p0 have False by (simp add: poly_mult poly_entire)}
  1009     with q p0 have False by (simp add: poly_mult poly_entire)}
  1010   with degree_unique[OF q, unfolded linear_pow_mul_degree] 
  1010   with degree_unique[OF q, unfolded linear_pow_mul_degree]
  1011   show ?thesis by auto
  1011   show ?thesis by auto
  1012 qed
  1012 qed
  1013 
  1013 
  1014 text{*Tidier versions of finiteness of roots.*}
  1014 text{*Tidier versions of finiteness of roots.*}
  1015 
  1015