src/HOL/Probability/Infinite_Product_Measure.thy
changeset 50040 5da32dc55cd8
parent 50039 bfd5198cbe40
child 50041 afe886a04198
equal deleted inserted replaced
50039:bfd5198cbe40 50040:5da32dc55cd8
    85 sublocale product_prob_space \<subseteq> projective_family I "\<lambda>J. PiM J M" M
    85 sublocale product_prob_space \<subseteq> projective_family I "\<lambda>J. PiM J M" M
    86 proof
    86 proof
    87   fix J::"'i set" assume "finite J"
    87   fix J::"'i set" assume "finite J"
    88   interpret f: finite_product_prob_space M J proof qed fact
    88   interpret f: finite_product_prob_space M J proof qed fact
    89   show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) \<noteq> \<infinity>" by simp
    89   show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) \<noteq> \<infinity>" by simp
       
    90   show "\<exists>A. range A \<subseteq> sets (Pi\<^isub>M J M) \<and>
       
    91             (\<Union>i. A i) = space (Pi\<^isub>M J M) \<and>
       
    92             (\<forall>i. emeasure (Pi\<^isub>M J M) (A i) \<noteq> \<infinity>)" using sigma_finite[OF `finite J`]
       
    93     by (auto simp add: sigma_finite_measure_def)
       
    94   show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) = 1" by (rule f.emeasure_space_1)
    90 qed simp_all
    95 qed simp_all
    91 
    96 
    92 lemma (in projective_family) prod_emb_injective:
    97 lemma (in projective_family) prod_emb_injective:
    93   assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
    98   assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
    94   assumes "prod_emb L M J X = prod_emb L M J Y"
    99   assumes "prod_emb L M J X = prod_emb L M J Y"