doc-src/TutorialI/CTL/document/CTLind.tex
changeset 48519 5deda0549f97
parent 48518 0c86acc069ad
child 48520 6d4ea2efa64b
equal deleted inserted replaced
48518:0c86acc069ad 48519:5deda0549f97
     1 %
       
     2 \begin{isabellebody}%
       
     3 \def\isabellecontext{CTLind}%
       
     4 %
       
     5 \isadelimtheory
       
     6 %
       
     7 \endisadelimtheory
       
     8 %
       
     9 \isatagtheory
       
    10 %
       
    11 \endisatagtheory
       
    12 {\isafoldtheory}%
       
    13 %
       
    14 \isadelimtheory
       
    15 %
       
    16 \endisadelimtheory
       
    17 %
       
    18 \isamarkupsubsection{CTL Revisited%
       
    19 }
       
    20 \isamarkuptrue%
       
    21 %
       
    22 \begin{isamarkuptext}%
       
    23 \label{sec:CTL-revisited}
       
    24 \index{CTL|(}%
       
    25 The purpose of this section is twofold: to demonstrate
       
    26 some of the induction principles and heuristics discussed above and to
       
    27 show how inductive definitions can simplify proofs.
       
    28 In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
       
    29 model checker for CTL\@. In particular the proof of the
       
    30 \isa{infinity{\isaliteral{5F}{\isacharunderscore}}lemma} on the way to \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} is not as
       
    31 simple as one might expect, due to the \isa{SOME} operator
       
    32 involved. Below we give a simpler proof of \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}}
       
    33 based on an auxiliary inductive definition.
       
    34 
       
    35 Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
       
    36 not touch any node in the set \isa{A}. Then \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} says
       
    37 that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
       
    38 then \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. We prove this by inductively defining the set
       
    39 \isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
       
    40 % Second proof of opposite direction, directly by well-founded induction
       
    41 % on the initial segment of M that avoids A.%
       
    42 \end{isamarkuptext}%
       
    43 \isamarkuptrue%
       
    44 \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
       
    45 \isanewline
       
    46 \ \ Avoid\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
       
    47 \ \ \isakeyword{for}\ s\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ state\ \isakeyword{and}\ A\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
       
    48 \isakeyword{where}\isanewline
       
    49 \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
       
    50 \ \ {\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}u{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ u\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}%
       
    51 \begin{isamarkuptext}%
       
    52 It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
       
    53 with \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
       
    54 starting with \isa{s} because (by definition of \isa{Avoid}) there is a
       
    55 finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
       
    56 The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}. However,
       
    57 this requires the following
       
    58 reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
       
    59 the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive undoes the reformulation after the proof.%
       
    60 \end{isamarkuptext}%
       
    61 \isamarkuptrue%
       
    62 \isacommand{lemma}\isamarkupfalse%
       
    63 \ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
       
    64 \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
       
    65 \ \ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ f\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
       
    66 %
       
    67 \isadelimproof
       
    68 %
       
    69 \endisadelimproof
       
    70 %
       
    71 \isatagproof
       
    72 \isacommand{apply}\isamarkupfalse%
       
    73 {\isaliteral{28}{\isacharparenleft}}erule\ Avoid{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
       
    74 \ \isacommand{apply}\isamarkupfalse%
       
    75 {\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
       
    76 \isacommand{apply}\isamarkupfalse%
       
    77 {\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline
       
    78 \isacommand{apply}\isamarkupfalse%
       
    79 {\isaliteral{28}{\isacharparenleft}}drule{\isaliteral{5F}{\isacharunderscore}}tac\ x\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}i{\isaliteral{2E}{\isachardot}}\ case\ i\ of\ {\isadigit{0}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ t\ {\isaliteral{7C}{\isacharbar}}\ Suc\ i\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ i{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{in}\ bspec{\isaliteral{29}{\isacharparenright}}\isanewline
       
    80 \isacommand{apply}\isamarkupfalse%
       
    81 {\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{5F}{\isacharunderscore}}all\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def\ split{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{2E}{\isachardot}}split{\isaliteral{29}{\isacharparenright}}\isanewline
       
    82 \isacommand{done}\isamarkupfalse%
       
    83 %
       
    84 \endisatagproof
       
    85 {\isafoldproof}%
       
    86 %
       
    87 \isadelimproof
       
    88 %
       
    89 \endisadelimproof
       
    90 %
       
    91 \begin{isamarkuptext}%
       
    92 \noindent
       
    93 The base case (\isa{t\ {\isaliteral{3D}{\isacharequal}}\ s}) is trivial and proved by \isa{blast}.
       
    94 In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
       
    95 starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
       
    96 the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t} in the induction hypothesis by the path starting with
       
    97 \isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
       
    98 expresses.  Simplification shows that this is a path starting with \isa{t} 
       
    99 and that the instantiated induction hypothesis implies the conclusion.
       
   100 
       
   101 Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
       
   102 path starts from \isa{s}, we want to show \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. For the
       
   103 inductive proof this must be generalized to the statement that every point \isa{t}
       
   104 ``between'' \isa{s} and \isa{A}, in other words all of \isa{Avoid\ s\ A},
       
   105 is contained in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}:%
       
   106 \end{isamarkuptext}%
       
   107 \isamarkuptrue%
       
   108 \isacommand{lemma}\isamarkupfalse%
       
   109 \ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline
       
   110 \ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
       
   111 \isadelimproof
       
   112 %
       
   113 \endisadelimproof
       
   114 %
       
   115 \isatagproof
       
   116 %
       
   117 \begin{isamarkuptxt}%
       
   118 \noindent
       
   119 The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}.
       
   120 If \isa{t} is already in \isa{A}, then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is
       
   121 trivial. If \isa{t} is not in \isa{A} but all successors are in
       
   122 \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} (induction hypothesis), then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is
       
   123 again trivial.
       
   124 
       
   125 The formal counterpart of this proof sketch is a well-founded induction
       
   126 on~\isa{M} restricted to \isa{Avoid\ s\ A\ {\isaliteral{2D}{\isacharminus}}\ A}, roughly speaking:
       
   127 \begin{isabelle}%
       
   128 \ \ \ \ \ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}%
       
   129 \end{isabelle}
       
   130 As we shall see presently, the absence of infinite \isa{A}-avoiding paths
       
   131 starting from \isa{s} implies well-foundedness of this relation. For the
       
   132 moment we assume this and proceed with the induction:%
       
   133 \end{isamarkuptxt}%
       
   134 \isamarkuptrue%
       
   135 \isacommand{apply}\isamarkupfalse%
       
   136 {\isaliteral{28}{\isacharparenleft}}subgoal{\isaliteral{5F}{\isacharunderscore}}tac\ {\isaliteral{22}{\isachardoublequoteopen}}wf{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{29}{\isacharparenright}}\isanewline
       
   137 \ \isacommand{apply}\isamarkupfalse%
       
   138 {\isaliteral{28}{\isacharparenleft}}erule{\isaliteral{5F}{\isacharunderscore}}tac\ a\ {\isaliteral{3D}{\isacharequal}}\ t\ \isakeyword{in}\ wf{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}\isanewline
       
   139 \ \isacommand{apply}\isamarkupfalse%
       
   140 {\isaliteral{28}{\isacharparenleft}}clarsimp{\isaliteral{29}{\isacharparenright}}%
       
   141 \begin{isamarkuptxt}%
       
   142 \noindent
       
   143 \begin{isabelle}%
       
   144 \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\isanewline
       
   145 \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\isanewline
       
   146 \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ }y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline
       
   147 \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
       
   148 \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\isanewline
       
   149 \ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline
       
   150 \isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ }wf\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}%
       
   151 \end{isabelle}
       
   152 Now the induction hypothesis states that if \isa{t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A}
       
   153 then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
       
   154 \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Unfolding \isa{lfp} in the conclusion of the first
       
   155 subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors
       
   156 of \isa{t} are in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}.  But if \isa{t} is not in \isa{A},
       
   157 the second 
       
   158 \isa{Avoid}-rule implies that all successors of \isa{t} are in
       
   159 \isa{Avoid\ s\ A}, because we also assume \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}.
       
   160 Hence, by the induction hypothesis, all successors of \isa{t} are indeed in
       
   161 \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Mechanically:%
       
   162 \end{isamarkuptxt}%
       
   163 \isamarkuptrue%
       
   164 \ \isacommand{apply}\isamarkupfalse%
       
   165 {\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}af{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline
       
   166 \ \isacommand{apply}\isamarkupfalse%
       
   167 {\isaliteral{28}{\isacharparenleft}}simp\ {\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}\ add{\isaliteral{3A}{\isacharcolon}}\ af{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline
       
   168 \ \isacommand{apply}\isamarkupfalse%
       
   169 {\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}%
       
   170 \begin{isamarkuptxt}%
       
   171 Having proved the main goal, we return to the proof obligation that the 
       
   172 relation used above is indeed well-founded. This is proved by contradiction: if
       
   173 the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
       
   174 \isa{wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain}:
       
   175 \begin{isabelle}%
       
   176 \ \ \ \ \ wf\ r\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}f{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}f\ {\isaliteral{28}{\isacharparenleft}}Suc\ i{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}\ f\ i{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}%
       
   177 \end{isabelle}
       
   178 From lemma \isa{ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path} the existence of an infinite
       
   179 \isa{A}-avoiding path starting in \isa{s} follows, contradiction.%
       
   180 \end{isamarkuptxt}%
       
   181 \isamarkuptrue%
       
   182 \isacommand{apply}\isamarkupfalse%
       
   183 {\isaliteral{28}{\isacharparenleft}}erule\ contrapos{\isaliteral{5F}{\isacharunderscore}}pp{\isaliteral{29}{\isacharparenright}}\isanewline
       
   184 \isacommand{apply}\isamarkupfalse%
       
   185 {\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain{\isaliteral{29}{\isacharparenright}}\isanewline
       
   186 \isacommand{apply}\isamarkupfalse%
       
   187 {\isaliteral{28}{\isacharparenleft}}erule\ exE{\isaliteral{29}{\isacharparenright}}\isanewline
       
   188 \isacommand{apply}\isamarkupfalse%
       
   189 {\isaliteral{28}{\isacharparenleft}}rule\ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{29}{\isacharparenright}}\isanewline
       
   190 \isacommand{apply}\isamarkupfalse%
       
   191 {\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline
       
   192 \isacommand{done}\isamarkupfalse%
       
   193 %
       
   194 \endisatagproof
       
   195 {\isafoldproof}%
       
   196 %
       
   197 \isadelimproof
       
   198 %
       
   199 \endisadelimproof
       
   200 %
       
   201 \begin{isamarkuptext}%
       
   202 The \isa{{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}} modifier of the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive in the
       
   203 statement of the lemma means
       
   204 that the assumption is left unchanged; otherwise the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p} 
       
   205 would be turned
       
   206 into a \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}p}, which would complicate matters below. As it is,
       
   207 \isa{Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp} is now
       
   208 \begin{isabelle}%
       
   209 \ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}%
       
   210 \end{isabelle}
       
   211 The main theorem is simply the corollary where \isa{t\ {\isaliteral{3D}{\isacharequal}}\ s},
       
   212 when the assumption \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} is trivially true
       
   213 by the first \isa{Avoid}-rule. Isabelle confirms this:%
       
   214 \index{CTL|)}%
       
   215 \end{isamarkuptext}%
       
   216 \isamarkuptrue%
       
   217 \isacommand{theorem}\isamarkupfalse%
       
   218 \ AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}\ i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
       
   219 %
       
   220 \isadelimproof
       
   221 %
       
   222 \endisadelimproof
       
   223 %
       
   224 \isatagproof
       
   225 \isacommand{by}\isamarkupfalse%
       
   226 {\isaliteral{28}{\isacharparenleft}}auto\ elim{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline
       
   227 \isanewline
       
   228 %
       
   229 \endisatagproof
       
   230 {\isafoldproof}%
       
   231 %
       
   232 \isadelimproof
       
   233 %
       
   234 \endisadelimproof
       
   235 %
       
   236 \isadelimtheory
       
   237 %
       
   238 \endisadelimtheory
       
   239 %
       
   240 \isatagtheory
       
   241 %
       
   242 \endisatagtheory
       
   243 {\isafoldtheory}%
       
   244 %
       
   245 \isadelimtheory
       
   246 %
       
   247 \endisadelimtheory
       
   248 \end{isabellebody}%
       
   249 %%% Local Variables:
       
   250 %%% mode: latex
       
   251 %%% TeX-master: "root"
       
   252 %%% End: