doc-src/TutorialI/Rules/Forward.thy
changeset 10846 623141a08705
child 10877 6417de2029b0
equal deleted inserted replaced
10845:3696bc935bbd 10846:623141a08705
       
     1 theory Forward = Primes:
       
     2 
       
     3 text{*\noindent
       
     4 Forward proof material: of, OF, THEN, simplify, rule_format.
       
     5 *}
       
     6 
       
     7 text{*\noindent
       
     8 SKIP most developments...
       
     9 *}
       
    10 
       
    11 (** Commutativity **)
       
    12 
       
    13 lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
       
    14   apply (auto simp add: is_gcd_def);
       
    15   done
       
    16 
       
    17 lemma gcd_commute: "gcd(m,n) = gcd(n,m)"
       
    18   apply (rule is_gcd_unique)
       
    19   apply (rule is_gcd)
       
    20   apply (subst is_gcd_commute)
       
    21   apply (simp add: is_gcd)
       
    22   done
       
    23 
       
    24 lemma gcd_1 [simp]: "gcd(m,1) = 1"
       
    25   apply (simp)
       
    26   done
       
    27 
       
    28 lemma gcd_1_left [simp]: "gcd(1,m) = 1"
       
    29   apply (simp add: gcd_commute [of 1])
       
    30   done
       
    31 
       
    32 text{*\noindent
       
    33 as far as HERE.
       
    34 *}
       
    35 
       
    36 
       
    37 text {*
       
    38 @{thm[display] gcd_1}
       
    39 \rulename{gcd_1}
       
    40 
       
    41 @{thm[display] gcd_1_left}
       
    42 \rulename{gcd_1_left}
       
    43 *};
       
    44 
       
    45 text{*\noindent
       
    46 SKIP THIS PROOF
       
    47 *}
       
    48 
       
    49 lemma gcd_mult_distrib2: "k * gcd(m,n) = gcd(k*m, k*n)"
       
    50 apply (induct_tac m n rule: gcd.induct)
       
    51 apply (case_tac "n=0")
       
    52 apply (simp)
       
    53 apply (case_tac "k=0")
       
    54 apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
       
    55 done
       
    56 
       
    57 text {*
       
    58 @{thm[display] gcd_mult_distrib2}
       
    59 \rulename{gcd_mult_distrib2}
       
    60 *};
       
    61 
       
    62 text{*\noindent
       
    63 of, simplified
       
    64 *}
       
    65 
       
    66 
       
    67 lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1];
       
    68 lemmas gcd_mult_1 = gcd_mult_0 [simplified];
       
    69 
       
    70 text {*
       
    71 @{thm[display] gcd_mult_distrib2 [of _ 1]}
       
    72 
       
    73 @{thm[display] gcd_mult_0}
       
    74 \rulename{gcd_mult_0}
       
    75 
       
    76 @{thm[display] gcd_mult_1}
       
    77 \rulename{gcd_mult_1}
       
    78 
       
    79 @{thm[display] sym}
       
    80 \rulename{sym}
       
    81 *};
       
    82 
       
    83 lemmas gcd_mult = gcd_mult_1 [THEN sym];
       
    84 
       
    85 lemmas gcd_mult = gcd_mult_distrib2 [of k 1, simplified, THEN sym];
       
    86       (*better in one step!*)
       
    87 
       
    88 text {*
       
    89 more legible
       
    90 *};
       
    91 
       
    92 lemma gcd_mult [simp]: "gcd(k, k*n) = k"
       
    93 by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])
       
    94 
       
    95 
       
    96 lemmas gcd_self = gcd_mult [of k 1, simplified];
       
    97 
       
    98 
       
    99 text {*
       
   100 Rules handy with THEN
       
   101 
       
   102 @{thm[display] iffD1}
       
   103 \rulename{iffD1}
       
   104 
       
   105 @{thm[display] iffD2}
       
   106 \rulename{iffD2}
       
   107 *};
       
   108 
       
   109 
       
   110 text {*
       
   111 again: more legible
       
   112 *};
       
   113 
       
   114 lemma gcd_self [simp]: "gcd(k,k) = k"
       
   115 by (rule gcd_mult [of k 1, simplified])
       
   116 
       
   117 
       
   118 lemma relprime_dvd_mult: 
       
   119       "\<lbrakk> gcd(k,n)=1; k dvd m*n \<rbrakk> \<Longrightarrow> k dvd m";
       
   120 apply (insert gcd_mult_distrib2 [of m k n])
       
   121 apply (simp)
       
   122 apply (erule_tac t="m" in ssubst);
       
   123 apply (simp)
       
   124 done
       
   125 
       
   126 
       
   127 text {*
       
   128 Another example of "insert"
       
   129 
       
   130 @{thm[display] mod_div_equality}
       
   131 \rulename{mod_div_equality}
       
   132 *};
       
   133 
       
   134 lemma div_mult_self_is_m: 
       
   135       "0<n \<Longrightarrow> (m*n) div n = (m::nat)"
       
   136 apply (insert mod_div_equality [of "m*n" n])
       
   137 apply (simp)
       
   138 done
       
   139 
       
   140 lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \<Longrightarrow> (k dvd m*n) = (k dvd m)";
       
   141 by (blast intro: relprime_dvd_mult dvd_trans)
       
   142 
       
   143 
       
   144 lemma relprime_20_81: "gcd(#20,#81) = 1";
       
   145 by (simp add: gcd.simps)
       
   146 
       
   147 
       
   148 
       
   149 text {*
       
   150 Examples of 'OF'
       
   151 
       
   152 @{thm[display] relprime_dvd_mult}
       
   153 \rulename{relprime_dvd_mult}
       
   154 
       
   155 @{thm[display] relprime_dvd_mult [OF relprime_20_81]}
       
   156 
       
   157 @{thm[display] dvd_refl}
       
   158 \rulename{dvd_refl}
       
   159 
       
   160 @{thm[display] dvd_add}
       
   161 \rulename{dvd_add}
       
   162 
       
   163 @{thm[display] dvd_add [OF dvd_refl dvd_refl]}
       
   164 
       
   165 @{thm[display] dvd_add [OF _ dvd_refl]}
       
   166 *};
       
   167 
       
   168 lemma "\<lbrakk>(z::int) < #37; #66 < #2*z; z*z \<noteq> #1225; Q(#34); Q(#36)\<rbrakk> \<Longrightarrow> Q(z)";
       
   169 apply (subgoal_tac "z = #34 \<or> z = #36")
       
   170 apply blast
       
   171 apply (subgoal_tac "z \<noteq> #35")
       
   172 apply arith
       
   173 apply force
       
   174 done
       
   175 
       
   176 text
       
   177 {*
       
   178 proof\ (prove):\ step\ 1\isanewline
       
   179 \isanewline
       
   180 goal\ (lemma):\isanewline
       
   181 \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \ \isasymLongrightarrow \ Q\ z\isanewline
       
   182 \ 1.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36;\isanewline
       
   183 \ \ \ \ \ \ \ z\ =\ \#34\ \isasymor \ z\ =\ \#36\isasymrbrakk \isanewline
       
   184 \ \ \ \ \isasymLongrightarrow \ Q\ z\isanewline
       
   185 \ 2.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \isanewline
       
   186 \ \ \ \ \isasymLongrightarrow \ z\ =\ \#34\ \isasymor \ z\ =\ \#36
       
   187 
       
   188 
       
   189 
       
   190 proof\ (prove):\ step\ 3\isanewline
       
   191 \isanewline
       
   192 goal\ (lemma):\isanewline
       
   193 \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \ \isasymLongrightarrow \ Q\ z\isanewline
       
   194 \ 1.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36;\isanewline
       
   195 \ \ \ \ \ \ \ z\ \isasymnoteq \ \#35\isasymrbrakk \isanewline
       
   196 \ \ \ \ \isasymLongrightarrow \ z\ =\ \#34\ \isasymor \ z\ =\ \#36\isanewline
       
   197 \ 2.\ \isasymlbrakk z\ <\ \#37;\ \#66\ <\ \#2\ *\ z;\ z\ *\ z\ \isasymnoteq \ \#1225;\ Q\ \#34;\ Q\ \#36\isasymrbrakk \isanewline
       
   198 \ \ \ \ \isasymLongrightarrow \ z\ \isasymnoteq \ \#35
       
   199 *}
       
   200 
       
   201 
       
   202 end