src/HOL/Polynomial.thy
changeset 29474 674a21226c5a
parent 29472 a63a2e46cec9
child 29475 c06d1b0a970f
equal deleted inserted replaced
29473:5fc19891652c 29474:674a21226c5a
   461   by (induct n, simp add: monom_0, simp add: monom_Suc)
   461   by (induct n, simp add: monom_0, simp add: monom_Suc)
   462 
   462 
   463 
   463 
   464 subsection {* Multiplication of polynomials *}
   464 subsection {* Multiplication of polynomials *}
   465 
   465 
   466 lemma Poly_mult_lemma:
   466 text {* TODO: move to SetInterval.thy *}
   467   fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0" and m n :: nat
       
   468   assumes "\<forall>i>m. f i = 0"
       
   469   assumes "\<forall>j>n. g j = 0"
       
   470   shows "\<forall>k>m+n. (\<Sum>i\<le>k. f i * g (k-i)) = 0"
       
   471 proof (clarify)
       
   472   fix k :: nat
       
   473   assume "m + n < k"
       
   474   show "(\<Sum>i\<le>k. f i * g (k - i)) = 0"
       
   475   proof (rule setsum_0' [rule_format])
       
   476     fix i :: nat
       
   477     assume "i \<in> {..k}" hence "i \<le> k" by simp
       
   478     with `m + n < k` have "m < i \<or> n < k - i" by arith
       
   479     thus "f i * g (k - i) = 0"
       
   480       using prems by auto
       
   481   qed
       
   482 qed
       
   483 
       
   484 lemma Poly_mult:
       
   485   fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0"
       
   486   shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i * g (n-i)) \<in> Poly"
       
   487   unfolding Poly_def
       
   488   by (safe, rule exI, rule Poly_mult_lemma)
       
   489 
       
   490 lemma poly_mult_assoc_lemma:
       
   491   fixes k :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
       
   492   shows "(\<Sum>j\<le>k. \<Sum>i\<le>j. f i (j - i) (n - j)) =
       
   493          (\<Sum>j\<le>k. \<Sum>i\<le>k - j. f j i (n - j - i))"
       
   494 proof (induct k)
       
   495   case 0 show ?case by simp
       
   496 next
       
   497   case (Suc k) thus ?case
       
   498     by (simp add: Suc_diff_le setsum_addf add_assoc
       
   499              cong: strong_setsum_cong)
       
   500 qed
       
   501 
       
   502 lemma poly_mult_commute_lemma:
       
   503   fixes n :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
       
   504   shows "(\<Sum>i\<le>n. f i (n - i)) = (\<Sum>i\<le>n. f (n - i) i)"
       
   505 proof (rule setsum_reindex_cong)
       
   506   show "inj_on (\<lambda>i. n - i) {..n}"
       
   507     by (rule inj_onI) simp
       
   508   show "{..n} = (\<lambda>i. n - i) ` {..n}"
       
   509     by (auto, rule_tac x="n - x" in image_eqI, simp_all)
       
   510 next
       
   511   fix i assume "i \<in> {..n}"
       
   512   hence "n - (n - i) = i" by simp
       
   513   thus "f (n - i) i = f (n - i) (n - (n - i))" by simp
       
   514 qed
       
   515 
       
   516 text {* TODO: move to appropriate theory *}
       
   517 lemma setsum_atMost_Suc_shift:
   467 lemma setsum_atMost_Suc_shift:
   518   fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
   468   fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
   519   shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
   469   shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
   520 proof (induct n)
   470 proof (induct n)
   521   case 0 show ?case by simp
   471   case 0 show ?case by simp
   536 instantiation poly :: (comm_semiring_0) comm_semiring_0
   486 instantiation poly :: (comm_semiring_0) comm_semiring_0
   537 begin
   487 begin
   538 
   488 
   539 definition
   489 definition
   540   times_poly_def:
   490   times_poly_def:
   541     "p * q = Abs_poly (\<lambda>n. \<Sum>i\<le>n. coeff p i * coeff q (n-i))"
   491     "p * q = poly_rec 0 (\<lambda>a p pq. smult a q + pCons 0 pq) p"
   542 
   492 
   543 lemma coeff_mult:
   493 lemma mult_poly_0_left: "(0::'a poly) * q = 0"
   544   "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
   494   unfolding times_poly_def by (simp add: poly_rec_0)
   545   unfolding times_poly_def
   495 
   546   by (simp add: Abs_poly_inverse coeff Poly_mult)
   496 lemma mult_pCons_left [simp]:
       
   497   "pCons a p * q = smult a q + pCons 0 (p * q)"
       
   498   unfolding times_poly_def by (simp add: poly_rec_pCons)
       
   499 
       
   500 lemma mult_poly_0_right: "p * (0::'a poly) = 0"
       
   501   by (induct p, simp add: mult_poly_0_left, simp)
       
   502 
       
   503 lemma mult_pCons_right [simp]:
       
   504   "p * pCons a q = smult a p + pCons 0 (p * q)"
       
   505   by (induct p, simp add: mult_poly_0_left, simp add: ring_simps)
       
   506 
       
   507 lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
       
   508 
       
   509 lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
       
   510   by (induct p, simp add: mult_poly_0, simp add: smult_add_right)
       
   511 
       
   512 lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
       
   513   by (induct q, simp add: mult_poly_0, simp add: smult_add_right)
       
   514 
       
   515 lemma mult_poly_add_left:
       
   516   fixes p q r :: "'a poly"
       
   517   shows "(p + q) * r = p * r + q * r"
       
   518   by (induct r, simp add: mult_poly_0,
       
   519                 simp add: smult_distribs group_simps)
   547 
   520 
   548 instance proof
   521 instance proof
   549   fix p q r :: "'a poly"
   522   fix p q r :: "'a poly"
   550   show 0: "0 * p = 0"
   523   show 0: "0 * p = 0"
   551     by (simp add: expand_poly_eq coeff_mult)
   524     by (rule mult_poly_0_left)
   552   show "p * 0 = 0"
   525   show "p * 0 = 0"
   553     by (simp add: expand_poly_eq coeff_mult)
   526     by (rule mult_poly_0_right)
   554   show "(p + q) * r = p * r + q * r"
   527   show "(p + q) * r = p * r + q * r"
   555     by (simp add: expand_poly_eq coeff_mult left_distrib setsum_addf)
   528     by (rule mult_poly_add_left)
   556   show "(p * q) * r = p * (q * r)"
   529   show "(p * q) * r = p * (q * r)"
   557   proof (rule poly_ext)
   530     by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left)
   558     fix n :: nat
       
   559     have "(\<Sum>j\<le>n. \<Sum>i\<le>j. coeff p i * coeff q (j - i) * coeff r (n - j)) =
       
   560           (\<Sum>j\<le>n. \<Sum>i\<le>n - j. coeff p j * coeff q i * coeff r (n - j - i))"
       
   561       by (rule poly_mult_assoc_lemma)
       
   562     thus "coeff ((p * q) * r) n = coeff (p * (q * r)) n"
       
   563       by (simp add: coeff_mult setsum_right_distrib
       
   564                     setsum_left_distrib mult_assoc)
       
   565   qed
       
   566   show "p * q = q * p"
   531   show "p * q = q * p"
   567   proof (rule poly_ext)
   532     by (induct p, simp add: mult_poly_0, simp)
   568     fix n :: nat
       
   569     have "(\<Sum>i\<le>n. coeff p i * coeff q (n - i)) =
       
   570           (\<Sum>i\<le>n. coeff p (n - i) * coeff q i)"
       
   571       by (rule poly_mult_commute_lemma)
       
   572     thus "coeff (p * q) n = coeff (q * p) n"
       
   573       by (simp add: coeff_mult mult_commute)
       
   574   qed
       
   575 qed
   533 qed
   576 
   534 
   577 end
   535 end
   578 
   536 
       
   537 lemma coeff_mult:
       
   538   "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
       
   539 proof (induct p arbitrary: n)
       
   540   case 0 show ?case by simp
       
   541 next
       
   542   case (pCons a p n) thus ?case
       
   543     by (cases n, simp, simp add: setsum_atMost_Suc_shift
       
   544                             del: setsum_atMost_Suc)
       
   545 qed
       
   546 
   579 lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
   547 lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
   580 apply (rule degree_le, simp add: coeff_mult)
   548 apply (rule degree_le)
   581 apply (rule Poly_mult_lemma)
   549 apply (induct p)
   582 apply (simp_all add: coeff_eq_0)
   550 apply simp
       
   551 apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
   583 done
   552 done
   584 
       
   585 lemma mult_pCons_left [simp]:
       
   586   "pCons a p * q = smult a q + pCons 0 (p * q)"
       
   587 apply (rule poly_ext)
       
   588 apply (case_tac n)
       
   589 apply (simp add: coeff_mult)
       
   590 apply (simp add: coeff_mult setsum_atMost_Suc_shift
       
   591             del: setsum_atMost_Suc)
       
   592 done
       
   593 
       
   594 lemma mult_pCons_right [simp]:
       
   595   "p * pCons a q = smult a p + pCons 0 (p * q)"
       
   596   using mult_pCons_left [of a q p] by (simp add: mult_commute)
       
   597 
       
   598 lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
       
   599   by (induct p, simp, simp add: smult_add_right)
       
   600 
       
   601 lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
       
   602   by (induct q, simp, simp add: smult_add_right)
       
   603 
   553 
   604 lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
   554 lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
   605   by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
   555   by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
   606 
   556 
   607 
   557