src/HOL/NumberTheory/EvenOdd.thy
changeset 18369 694ea14ab4f2
parent 16663 13e9c402308b
child 19670 2e4a143c73c5
equal deleted inserted replaced
18368:2f9b2539c5bb 18369:694ea14ab4f2
     3     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
     3     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
     4 *)
     4 *)
     5 
     5 
     6 header {*Parity: Even and Odd Integers*}
     6 header {*Parity: Even and Odd Integers*}
     7 
     7 
     8 theory EvenOdd imports Int2 begin;
     8 theory EvenOdd imports Int2 begin
     9 
     9 
    10 text{*Note.  This theory is being revised.  See the web page
    10 text{*Note.  This theory is being revised.  See the web page
    11 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
    11 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
    12 
    12 
    13 constdefs
    13 constdefs
    14   zOdd    :: "int set"
    14   zOdd    :: "int set"
    15   "zOdd == {x. \<exists>k. x = 2*k + 1}"
    15   "zOdd == {x. \<exists>k. x = 2 * k + 1}"
    16   zEven   :: "int set"
    16   zEven   :: "int set"
    17   "zEven == {x. \<exists>k. x = 2 * k}"
    17   "zEven == {x. \<exists>k. x = 2 * k}"
    18 
    18 
    19 (***********************************************************)
    19 (***********************************************************)
    20 (*                                                         *)
    20 (*                                                         *)
    21 (* Some useful properties about even and odd               *)
    21 (* Some useful properties about even and odd               *)
    22 (*                                                         *)
    22 (*                                                         *)
    23 (***********************************************************)
    23 (***********************************************************)
    24 
    24 
    25 lemma one_not_even: "~(1 \<in> zEven)";
    25 lemma zOddI [intro?]: "x = 2 * k + 1 \<Longrightarrow> x \<in> zOdd"
    26   apply (simp add: zEven_def)
    26   and zOddE [elim?]: "x \<in> zOdd \<Longrightarrow> (!!k. x = 2 * k + 1 \<Longrightarrow> C) \<Longrightarrow> C"
    27   apply (rule allI, case_tac "k \<le> 0", auto)
    27   by (auto simp add: zOdd_def)
    28 done
    28 
    29 
    29 lemma zEvenI [intro?]: "x = 2 * k \<Longrightarrow> x \<in> zEven"
    30 lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)";
    30   and zEvenE [elim?]: "x \<in> zEven \<Longrightarrow> (!!k. x = 2 * k \<Longrightarrow> C) \<Longrightarrow> C"
    31   apply (auto simp add: zOdd_def zEven_def)
    31   by (auto simp add: zEven_def)
    32   proof -;
    32 
    33     fix a b;
    33 lemma one_not_even: "~(1 \<in> zEven)"
    34     assume "2 * (a::int) = 2 * (b::int) + 1"; 
    34 proof
    35     then have "2 * (a::int) - 2 * (b :: int) = 1";
    35   assume "1 \<in> zEven"
    36        by arith
    36   then obtain k :: int where "1 = 2 * k" ..
    37     then have "2 * (a - b) = 1";
    37   then show False by arith
    38        by (auto simp add: zdiff_zmult_distrib)
    38 qed
    39     moreover have "(2 * (a - b)):zEven";
    39 
    40        by (auto simp only: zEven_def)
    40 lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)"
    41     ultimately show "False";
    41 proof -
    42        by (auto simp add: one_not_even)
    42   {
    43   qed;
    43     fix a b
    44 
    44     assume "2 * (a::int) = 2 * (b::int) + 1"
    45 lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)";
    45     then have "2 * (a::int) - 2 * (b :: int) = 1"
    46   by (simp add: zOdd_def zEven_def, presburger)
       
    47 
       
    48 lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven";
       
    49   by (insert even_odd_disj, auto)
       
    50 
       
    51 lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd";
       
    52   apply (case_tac "x \<in> zOdd", auto)
       
    53   apply (drule not_odd_impl_even)
       
    54   apply (auto simp add: zEven_def zOdd_def)
       
    55   proof -;
       
    56     fix a b; 
       
    57     assume "2 * a * y = 2 * b + 1";
       
    58     then have "2 * a * y - 2 * b = 1";
       
    59       by arith
    46       by arith
    60     then have "2 * (a * y - b) = 1";
    47     then have "2 * (a - b) = 1"
    61       by (auto simp add: zdiff_zmult_distrib)
    48       by (auto simp add: zdiff_zmult_distrib)
    62     moreover have "(2 * (a * y - b)):zEven";
    49     moreover have "(2 * (a - b)):zEven"
    63        by (auto simp only: zEven_def)
    50       by (auto simp only: zEven_def)
    64     ultimately show "False";
    51     ultimately have False
    65        by (auto simp add: one_not_even)
    52       by (auto simp add: one_not_even)
    66   qed;
    53   }
    67 
    54   then show ?thesis
    68 lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven";
    55     by (auto simp add: zOdd_def zEven_def)
       
    56 qed
       
    57 
       
    58 lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)"
       
    59   by (simp add: zOdd_def zEven_def) arith
       
    60 
       
    61 lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven"
       
    62   using even_odd_disj by auto
       
    63 
       
    64 lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd"
       
    65 proof (rule classical)
       
    66   assume "\<not> ?thesis"
       
    67   then have "x \<in> zEven" by (rule not_odd_impl_even)
       
    68   then obtain a where a: "x = 2 * a" ..
       
    69   assume "x * y : zOdd"
       
    70   then obtain b where "x * y = 2 * b + 1" ..
       
    71   with a have "2 * a * y = 2 * b + 1" by simp
       
    72   then have "2 * a * y - 2 * b = 1"
       
    73     by arith
       
    74   then have "2 * (a * y - b) = 1"
       
    75     by (auto simp add: zdiff_zmult_distrib)
       
    76   moreover have "(2 * (a * y - b)):zEven"
       
    77     by (auto simp only: zEven_def)
       
    78   ultimately have False
       
    79     by (auto simp add: one_not_even)
       
    80   then show ?thesis ..
       
    81 qed
       
    82 
       
    83 lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven"
    69   by (auto simp add: zOdd_def zEven_def)
    84   by (auto simp add: zOdd_def zEven_def)
    70 
    85 
    71 lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0";
    86 lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0"
    72   by (auto simp add: zEven_def)
    87   by (auto simp add: zEven_def)
    73 
    88 
    74 lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x";
    89 lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x"
    75   by (auto simp add: zEven_def)
    90   by (auto simp add: zEven_def)
    76 
    91 
    77 lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven";
    92 lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven"
    78   apply (auto simp add: zEven_def)
    93   apply (auto simp add: zEven_def)
    79   by (auto simp only: zadd_zmult_distrib2 [THEN sym])
    94   apply (auto simp only: zadd_zmult_distrib2 [symmetric])
    80 
    95   done
    81 lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven";
    96 
    82   by (auto simp add: zEven_def)
    97 lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven"
    83 
    98   by (auto simp add: zEven_def)
    84 lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven";
    99 
       
   100 lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven"
    85   apply (auto simp add: zEven_def)
   101   apply (auto simp add: zEven_def)
    86   by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
   102   apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
    87 
   103   done
    88 lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven";
   104 
    89   apply (auto simp add: zOdd_def zEven_def)
   105 lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven"
    90   by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
   106   apply (auto simp add: zOdd_def zEven_def)
    91 
   107   apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
    92 lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd";
   108   done
       
   109 
       
   110 lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd"
    93   apply (auto simp add: zOdd_def zEven_def)
   111   apply (auto simp add: zOdd_def zEven_def)
    94   apply (rule_tac x = "k - ka - 1" in exI)
   112   apply (rule_tac x = "k - ka - 1" in exI)
    95   by auto
   113   apply auto
    96 
   114   done
    97 lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd";
   115 
    98   apply (auto simp add: zOdd_def zEven_def)
   116 lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd"
    99   by (auto simp only: zdiff_zmult_distrib2 [THEN sym])
   117   apply (auto simp add: zOdd_def zEven_def)
   100 
   118   apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
   101 lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd";
   119   done
       
   120 
       
   121 lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd"
   102   apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
   122   apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
   103   apply (rule_tac x = "2 * ka * k + ka + k" in exI)
   123   apply (rule_tac x = "2 * ka * k + ka + k" in exI)
   104   by (auto simp add: zadd_zmult_distrib)
   124   apply (auto simp add: zadd_zmult_distrib)
   105 
   125   done
   106 lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))";
   126 
   107   by (insert even_odd_conj even_odd_disj, auto)
   127 lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))"
   108 
   128   using even_odd_conj even_odd_disj by auto
   109 lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"; 
   129 
   110   by (insert odd_iff_not_even odd_times_odd, auto)
   130 lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"
   111 
   131   using odd_iff_not_even odd_times_odd by auto
   112 lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))";
   132 
   113   apply (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
   133 lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))"
   114      even_minus_odd odd_minus_even)
   134 proof
   115   proof -;
   135   assume xy: "x - y \<in> zEven"
   116     assume "x - y \<in> zEven" and "x \<in> zEven";
   136   {
   117     show "y \<in> zEven";
   137     assume x: "x \<in> zEven"
   118     proof (rule classical);
   138     have "y \<in> zEven"
   119       assume "~(y \<in> zEven)"; 
   139     proof (rule classical)
   120       then have "y \<in> zOdd" 
   140       assume "\<not> ?thesis"
       
   141       then have "y \<in> zOdd"
       
   142         by (simp add: odd_iff_not_even)
       
   143       with x have "x - y \<in> zOdd"
       
   144         by (simp add: even_minus_odd)
       
   145       with xy have False
   121         by (auto simp add: odd_iff_not_even)
   146         by (auto simp add: odd_iff_not_even)
   122       with prems have "x - y \<in> zOdd";
   147       then show ?thesis ..
   123         by (simp add: even_minus_odd)
   148     qed
   124       with prems have "False"; 
   149   } moreover {
       
   150     assume y: "y \<in> zEven"
       
   151     have "x \<in> zEven"
       
   152     proof (rule classical)
       
   153       assume "\<not> ?thesis"
       
   154       then have "x \<in> zOdd"
   125         by (auto simp add: odd_iff_not_even)
   155         by (auto simp add: odd_iff_not_even)
   126       thus ?thesis;
   156       with y have "x - y \<in> zOdd"
   127         by auto
   157         by (simp add: odd_minus_even)
   128     qed;
   158       with xy have False
   129     next assume "x - y \<in> zEven" and "y \<in> zEven"; 
       
   130     show "x \<in> zEven";
       
   131     proof (rule classical);
       
   132       assume "~(x \<in> zEven)"; 
       
   133       then have "x \<in> zOdd" 
       
   134         by (auto simp add: odd_iff_not_even)
   159         by (auto simp add: odd_iff_not_even)
   135       with prems have "x - y \<in> zOdd";
   160       then show ?thesis ..
   136         by (simp add: odd_minus_even)
   161     qed
   137       with prems have "False"; 
   162   }
   138         by (auto simp add: odd_iff_not_even)
   163   ultimately show "(x \<in> zEven) = (y \<in> zEven)"
   139       thus ?thesis;
   164     by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
   140         by auto
   165       even_minus_odd odd_minus_even)
   141     qed;
   166 next
   142   qed;
   167   assume "(x \<in> zEven) = (y \<in> zEven)"
   143 
   168   then show "x - y \<in> zEven"
   144 lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1";
   169     by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
   145 proof -;
   170       even_minus_odd odd_minus_even)
   146   assume "x \<in> zEven" and "0 \<le> x";
   171 qed
   147   then have "\<exists>k. x = 2 * k";
   172 
   148     by (auto simp only: zEven_def)
   173 lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1"
   149   then show ?thesis;
   174 proof -
   150     proof;
   175   assume 1: "x \<in> zEven" and 2: "0 \<le> x"
   151       fix a;
   176   from 1 obtain a where 3: "x = 2 * a" ..
   152       assume "x = 2 * a";
   177   with 2 have "0 \<le> a" by simp
   153       from prems have a: "0 \<le> a";
   178   from 2 3 have "nat x = nat (2 * a)"
   154         by arith
   179     by simp
   155       from prems have "nat x = nat(2 * a)";
   180   also from 3 have "nat (2 * a) = 2 * nat a"
   156         by auto
   181     by (simp add: nat_mult_distrib)
   157       also from a have "nat (2 * a) = 2 * nat a";
   182   finally have "(-1::int)^nat x = (-1)^(2 * nat a)"
   158         by (auto simp add: nat_mult_distrib)
   183     by simp
   159       finally have "(-1::int)^nat x = (-1)^(2 * nat a)";
   184   also have "... = ((-1::int)^2)^ (nat a)"
   160         by auto
   185     by (simp add: zpower_zpower [symmetric])
   161       also have "... = ((-1::int)^2)^ (nat a)";
   186   also have "(-1::int)^2 = 1"
   162         by (auto simp add: zpower_zpower [THEN sym])
   187     by simp
   163       also have "(-1::int)^2 = 1";
   188   finally show ?thesis
   164         by auto
   189     by simp
   165       finally; show ?thesis;
   190 qed
   166         by auto
   191 
   167     qed;
   192 lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1"
   168 qed;
   193 proof -
   169 
   194   assume 1: "x \<in> zOdd" and 2: "0 \<le> x"
   170 lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1";
   195   from 1 obtain a where 3: "x = 2 * a + 1" ..
   171 proof -;
   196   with 2 have a: "0 \<le> a" by simp
   172   assume "x \<in> zOdd" and "0 \<le> x";
   197   with 2 3 have "nat x = nat (2 * a + 1)"
   173   then have "\<exists>k. x = 2 * k + 1";
   198     by simp
   174     by (auto simp only: zOdd_def)
   199   also from a have "nat (2 * a + 1) = 2 * nat a + 1"
   175   then show ?thesis;
   200     by (auto simp add: nat_mult_distrib nat_add_distrib)
   176     proof;
   201   finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"
   177       fix a;
   202     by simp
   178       assume "x = 2 * a + 1";
   203   also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"
   179       from prems have a: "0 \<le> a";
   204     by (auto simp add: zpower_zpower [symmetric] zpower_zadd_distrib)
   180         by arith
   205   also have "(-1::int)^2 = 1"
   181       from prems have "nat x = nat(2 * a + 1)";
   206     by simp
   182         by auto
   207   finally show ?thesis
   183       also from a have "nat (2 * a + 1) = 2 * nat a + 1";
   208     by simp
   184         by (auto simp add: nat_mult_distrib nat_add_distrib)
   209 qed
   185       finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)";
   210 
   186         by auto
   211 lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==>
   187       also have "... = ((-1::int)^2)^ (nat a) * (-1)^1";
   212   (-1::int)^(nat x) = (-1::int)^(nat y)"
   188         by (auto simp add: zpower_zpower [THEN sym] zpower_zadd_distrib)
   213   using even_odd_disj [of x] even_odd_disj [of y]
   189       also have "(-1::int)^2 = 1";
       
   190         by auto
       
   191       finally; show ?thesis;
       
   192         by auto
       
   193     qed;
       
   194 qed;
       
   195 
       
   196 lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==> 
       
   197   (-1::int)^(nat x) = (-1::int)^(nat y)";
       
   198   apply (insert even_odd_disj [of x])
       
   199   apply (insert even_odd_disj [of y])
       
   200   by (auto simp add: neg_one_even_power neg_one_odd_power)
   214   by (auto simp add: neg_one_even_power neg_one_odd_power)
   201 
   215 
   202 lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))";
   216 
       
   217 lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"
   203   by (auto simp add: zcong_def zdvd_not_zless)
   218   by (auto simp add: zcong_def zdvd_not_zless)
   204 
   219 
   205 lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2";
   220 lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2"
   206   apply (auto simp only: zEven_def)
   221 proof -
   207   proof -;
   222   assume 1: "y \<in> zEven" and 2: "x < y"
   208     fix k assume "x < 2 * k";
   223   from 1 obtain k where k: "y = 2 * k" ..
   209     then have "x div 2 < k" by (auto simp add: div_prop1)
   224   with 2 have "x < 2 * k" by simp
   210     also have "k = (2 * k) div 2"; by auto
   225   then have "x div 2 < k" by (auto simp add: div_prop1)
   211     finally show "x div 2 < 2 * k div 2" by auto
   226   also have "k = (2 * k) div 2" by simp
   212   qed;
   227   finally have "x div 2 < 2 * k div 2" by simp
   213 
   228   with k show ?thesis by simp
   214 lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2";
   229 qed
       
   230 
       
   231 lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2"
   215   by (auto simp add: zEven_def, auto simp add: zdiv_zadd1_eq)
   232   by (auto simp add: zEven_def, auto simp add: zdiv_zadd1_eq)
   216 
   233 
   217 lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y";
   234 lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y"
   218   by (auto simp add: zEven_def)
   235   by (auto simp add: zEven_def)
   219 
   236 
   220 (* An odd prime is greater than 2 *)
   237 (* An odd prime is greater than 2 *)
   221 
   238 
   222 lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)";
   239 lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)"
   223   apply (auto simp add: zOdd_def zprime_def)
   240   apply (auto simp add: zOdd_def zprime_def)
   224   apply (drule_tac x = 2 in allE)
   241   apply (drule_tac x = 2 in allE)
   225   apply (insert odd_iff_not_even [of p])  
   242   using odd_iff_not_even [of p]
   226 by (auto simp add: zOdd_def zEven_def)
   243   apply (auto simp add: zOdd_def zEven_def)
       
   244   done
   227 
   245 
   228 (* Powers of -1 and parity *)
   246 (* Powers of -1 and parity *)
   229 
   247 
   230 lemma neg_one_special: "finite A ==> 
   248 lemma neg_one_special: "finite A ==>
   231     ((-1 :: int) ^ card A) * (-1 ^ card A) = 1";
   249     ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"
   232   by (induct set: Finites, auto)
   250   by (induct set: Finites) auto
   233 
   251 
   234 lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1";
   252 lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"
   235   apply (induct_tac n)
   253   by (induct n) auto
   236   by auto
       
   237 
   254 
   238 lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
   255 lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
   239   ==> ((-1::int)^j = (-1::int)^k)";
   256     ==> ((-1::int)^j = (-1::int)^k)"
   240   apply (insert neg_one_power [of j])
   257   using neg_one_power [of j] and insert neg_one_power [of k]
   241   apply (insert neg_one_power [of k])
       
   242   by (auto simp add: one_not_neg_one_mod_m zcong_sym)
   258   by (auto simp add: one_not_neg_one_mod_m zcong_sym)
   243 
   259 
   244 end;
   260 end