src/HOL/Lattices_Big.thy
changeset 58467 6a3da58f7233
parent 57800 84748234de9d
child 58889 5b7a9633cfa8
equal deleted inserted replaced
58466:dde28333367f 58467:6a3da58f7233
   557 
   557 
   558 lemma Max_in [simp]:
   558 lemma Max_in [simp]:
   559   assumes "finite A" and "A \<noteq> {}"
   559   assumes "finite A" and "A \<noteq> {}"
   560   shows "Max A \<in> A"
   560   shows "Max A \<in> A"
   561   using assms by (auto simp add: max_def Max.closed)
   561   using assms by (auto simp add: max_def Max.closed)
       
   562 
       
   563 lemma Min_insert2:
       
   564   assumes "finite A" and min: "\<And>b. b \<in> A \<Longrightarrow> a \<le> b"
       
   565   shows "Min (insert a A) = a"
       
   566 proof (cases "A = {}")
       
   567   case True then show ?thesis by simp
       
   568 next
       
   569   case False with `finite A` have "Min (insert a A) = min a (Min A)"
       
   570     by simp
       
   571   moreover from `finite A` `A \<noteq> {}` min have "a \<le> Min A" by simp
       
   572   ultimately show ?thesis by (simp add: min.absorb1)
       
   573 qed
       
   574 
       
   575 lemma Max_insert2:
       
   576   assumes "finite A" and max: "\<And>b. b \<in> A \<Longrightarrow> b \<le> a"
       
   577   shows "Max (insert a A) = a"
       
   578 proof (cases "A = {}")
       
   579   case True then show ?thesis by simp
       
   580 next
       
   581   case False with `finite A` have "Max (insert a A) = max a (Max A)"
       
   582     by simp
       
   583   moreover from `finite A` `A \<noteq> {}` max have "Max A \<le> a" by simp
       
   584   ultimately show ?thesis by (simp add: max.absorb1)
       
   585 qed
   562 
   586 
   563 lemma Min_le [simp]:
   587 lemma Min_le [simp]:
   564   assumes "finite A" and "x \<in> A"
   588   assumes "finite A" and "x \<in> A"
   565   shows "Min A \<le> x"
   589   shows "Min A \<le> x"
   566   using assms by (fact Min.coboundedI)
   590   using assms by (fact Min.coboundedI)