src/ZF/OrderType.ML
changeset 13140 6d97dbb189a9
parent 13139 94648e0e4506
child 13141 f4ed10eaaff8
equal deleted inserted replaced
13139:94648e0e4506 13140:6d97dbb189a9
     1 (*  Title:      ZF/OrderType.ML
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1994  University of Cambridge
       
     5 
       
     6 Order types and ordinal arithmetic in Zermelo-Fraenkel Set Theory 
       
     7 
       
     8 Ordinal arithmetic is traditionally defined in terms of order types, as here.
       
     9 But a definition by transfinite recursion would be much simpler!
       
    10 *)
       
    11 
       
    12 
       
    13 (*??for Ordinal.ML*)
       
    14 (*suitable for rewriting PROVIDED i has been fixed*)
       
    15 Goal "[| j:i; Ord(i) |] ==> Ord(j)";
       
    16 by (blast_tac (claset() addIs [Ord_in_Ord]) 1);
       
    17 qed "Ord_in_Ord'";
       
    18 
       
    19 
       
    20 (**** Proofs needing the combination of Ordinal.thy and Order.thy ****)
       
    21 
       
    22 val [prem] = goal (the_context ()) "j le i ==> well_ord(j, Memrel(i))";
       
    23 by (rtac well_ordI 1);
       
    24 by (rtac (wf_Memrel RS wf_imp_wf_on) 1);
       
    25 by (resolve_tac [prem RS ltE] 1);
       
    26 by (asm_simp_tac (simpset() addsimps [linear_def, 
       
    27 				      [ltI, prem] MRS lt_trans2 RS ltD]) 1);
       
    28 by (REPEAT (resolve_tac [ballI, Ord_linear] 1));
       
    29 by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));
       
    30 qed "le_well_ord_Memrel";
       
    31 
       
    32 (*"Ord(i) ==> well_ord(i, Memrel(i))"*)
       
    33 bind_thm ("well_ord_Memrel", le_refl RS le_well_ord_Memrel);
       
    34 
       
    35 (*Kunen's Theorem 7.3 (i), page 16;  see also Ordinal/Ord_in_Ord
       
    36   The smaller ordinal is an initial segment of the larger *)
       
    37 Goalw [pred_def, lt_def]
       
    38     "j<i ==> pred(i, j, Memrel(i)) = j";
       
    39 by (Asm_simp_tac 1);
       
    40 by (blast_tac (claset() addIs [Ord_trans]) 1);
       
    41 qed "lt_pred_Memrel";
       
    42 
       
    43 Goalw [pred_def,Memrel_def] 
       
    44       "x:A ==> pred(A, x, Memrel(A)) = A Int x";
       
    45 by (Blast_tac 1);
       
    46 qed "pred_Memrel";
       
    47 
       
    48 Goal "[| j<i;  f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R";
       
    49 by (ftac lt_pred_Memrel 1);
       
    50 by (etac ltE 1);
       
    51 by (rtac (well_ord_Memrel RS well_ord_iso_predE) 1 THEN
       
    52     assume_tac 3 THEN assume_tac 1);
       
    53 by (rewtac ord_iso_def);
       
    54 (*Combining the two simplifications causes looping*)
       
    55 by (Asm_simp_tac 1);
       
    56 by (blast_tac (claset() addIs [bij_is_fun RS apply_type, Ord_trans]) 1);
       
    57 qed "Ord_iso_implies_eq_lemma";
       
    58 
       
    59 (*Kunen's Theorem 7.3 (ii), page 16.  Isomorphic ordinals are equal*)
       
    60 Goal "[| Ord(i);  Ord(j);  f:  ord_iso(i,Memrel(i),j,Memrel(j)) |]    \
       
    61 \     ==> i=j";
       
    62 by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
       
    63 by (REPEAT (eresolve_tac [asm_rl, ord_iso_sym, Ord_iso_implies_eq_lemma] 1));
       
    64 qed "Ord_iso_implies_eq";
       
    65 
       
    66 
       
    67 (**** Ordermap and ordertype ****)
       
    68 
       
    69 Goalw [ordermap_def,ordertype_def]
       
    70     "ordermap(A,r) : A -> ordertype(A,r)";
       
    71 by (rtac lam_type 1);
       
    72 by (rtac (lamI RS imageI) 1);
       
    73 by (REPEAT (assume_tac 1));
       
    74 qed "ordermap_type";
       
    75 
       
    76 (*** Unfolding of ordermap ***)
       
    77 
       
    78 (*Useful for cardinality reasoning; see CardinalArith.ML*)
       
    79 Goalw [ordermap_def, pred_def]
       
    80     "[| wf[A](r);  x:A |] ==> \
       
    81 \         ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)";
       
    82 by (Asm_simp_tac 1);
       
    83 by (etac (wfrec_on RS trans) 1);
       
    84 by (assume_tac 1);
       
    85 by (asm_simp_tac (simpset() addsimps [subset_iff, image_lam,
       
    86                                   vimage_singleton_iff]) 1);
       
    87 qed "ordermap_eq_image";
       
    88 
       
    89 (*Useful for rewriting PROVIDED pred is not unfolded until later!*)
       
    90 Goal "[| wf[A](r);  x:A |] ==> \
       
    91 \         ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}";
       
    92 by (asm_simp_tac (simpset() addsimps [ordermap_eq_image, pred_subset, 
       
    93                                   ordermap_type RS image_fun]) 1);
       
    94 qed "ordermap_pred_unfold";
       
    95 
       
    96 (*pred-unfolded version.  NOT suitable for rewriting -- loops!*)
       
    97 bind_thm ("ordermap_unfold", rewrite_rule [pred_def] ordermap_pred_unfold);
       
    98 
       
    99 (*The theorem above is 
       
   100 
       
   101 [| wf[A](r); x : A |]
       
   102 ==> ordermap(A,r) ` x = {ordermap(A,r) ` y . y: {y: A . <y,x> : r}}
       
   103 
       
   104 NOTE: the definition of ordermap used here delivers ordinals only if r is
       
   105 transitive.  If r is the predecessor relation on the naturals then
       
   106 ordermap(nat,predr) ` n equals {n-1} and not n.  A more complicated definition,
       
   107 like
       
   108 
       
   109   ordermap(A,r) ` x = Union{succ(ordermap(A,r) ` y) . y: {y: A . <y,x> : r}},
       
   110 
       
   111 might eliminate the need for r to be transitive.
       
   112 *)
       
   113 
       
   114 
       
   115 (*** Showing that ordermap, ordertype yield ordinals ***)
       
   116 
       
   117 fun ordermap_elim_tac i =
       
   118     EVERY [etac (ordermap_unfold RS equalityD1 RS subsetD RS RepFunE) i,
       
   119            assume_tac (i+1),
       
   120            assume_tac i];
       
   121 
       
   122 Goalw [well_ord_def, tot_ord_def, part_ord_def]
       
   123     "[| well_ord(A,r);  x:A |] ==> Ord(ordermap(A,r) ` x)";
       
   124 by Safe_tac;
       
   125 by (wf_on_ind_tac "x" [] 1);
       
   126 by (asm_simp_tac (simpset() addsimps [ordermap_pred_unfold]) 1);
       
   127 by (rtac (Ord_is_Transset RSN (2,OrdI)) 1);
       
   128 by (rewrite_goals_tac [pred_def,Transset_def]);
       
   129 by (Blast_tac 2);
       
   130 by Safe_tac;
       
   131 by (ordermap_elim_tac 1);
       
   132 by (fast_tac (claset() addSEs [trans_onD]) 1);
       
   133 qed "Ord_ordermap";
       
   134 
       
   135 Goalw [ordertype_def]
       
   136     "well_ord(A,r) ==> Ord(ordertype(A,r))";
       
   137 by (stac ([ordermap_type, subset_refl] MRS image_fun) 1);
       
   138 by (rtac (Ord_is_Transset RSN (2,OrdI)) 1);
       
   139 by (blast_tac (claset() addIs [Ord_ordermap]) 2);
       
   140 by (rewrite_goals_tac [Transset_def,well_ord_def]);
       
   141 by Safe_tac;
       
   142 by (ordermap_elim_tac 1);
       
   143 by (Blast_tac 1);
       
   144 qed "Ord_ordertype";
       
   145 
       
   146 (*** ordermap preserves the orderings in both directions ***)
       
   147 
       
   148 Goal "[| <w,x>: r;  wf[A](r);  w: A; x: A |] ==>    \
       
   149 \         ordermap(A,r)`w : ordermap(A,r)`x";
       
   150 by (eres_inst_tac [("x1", "x")] (ordermap_unfold RS ssubst) 1);
       
   151 by (assume_tac 1);
       
   152 by (Blast_tac 1);
       
   153 qed "ordermap_mono";
       
   154 
       
   155 (*linearity of r is crucial here*)
       
   156 Goalw [well_ord_def, tot_ord_def]
       
   157     "[| ordermap(A,r)`w : ordermap(A,r)`x;  well_ord(A,r);  \
       
   158 \            w: A; x: A |] ==> <w,x>: r";
       
   159 by Safe_tac;
       
   160 by (linear_case_tac 1);
       
   161 by (blast_tac (claset() addSEs [mem_not_refl RS notE]) 1);
       
   162 by (dtac ordermap_mono 1);
       
   163 by (REPEAT_SOME assume_tac);
       
   164 by (etac mem_asym 1);
       
   165 by (assume_tac 1);
       
   166 qed "converse_ordermap_mono";
       
   167 
       
   168 bind_thm ("ordermap_surj", 
       
   169           rewrite_rule [symmetric ordertype_def] 
       
   170               (ordermap_type RS surj_image));
       
   171 
       
   172 Goalw [well_ord_def, tot_ord_def, bij_def, inj_def]
       
   173     "well_ord(A,r) ==> ordermap(A,r) : bij(A, ordertype(A,r))";
       
   174 by (force_tac (claset() addSIs [ordermap_type, ordermap_surj]
       
   175 		       addEs [linearE]
       
   176 		       addDs [ordermap_mono],
       
   177 	       simpset() addsimps [mem_not_refl]) 1);
       
   178 qed "ordermap_bij";
       
   179 
       
   180 (*** Isomorphisms involving ordertype ***)
       
   181 
       
   182 Goalw [ord_iso_def]
       
   183  "well_ord(A,r) ==> \
       
   184 \      ordermap(A,r) : ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))";
       
   185 by (safe_tac (claset() addSEs [well_ord_is_wf]
       
   186 		      addSIs [ordermap_type RS apply_type,
       
   187 			      ordermap_mono, ordermap_bij]));
       
   188 by (blast_tac (claset() addSDs [converse_ordermap_mono]) 1);
       
   189 qed "ordertype_ord_iso";
       
   190 
       
   191 Goal "[| f: ord_iso(A,r,B,s);  well_ord(B,s) |] ==> \
       
   192 \    ordertype(A,r) = ordertype(B,s)";
       
   193 by (ftac well_ord_ord_iso 1 THEN assume_tac 1);
       
   194 by (rtac Ord_iso_implies_eq 1
       
   195     THEN REPEAT (etac Ord_ordertype 1));
       
   196 by (deepen_tac (claset() addIs  [ord_iso_trans, ord_iso_sym]
       
   197                       addSEs [ordertype_ord_iso]) 0 1);
       
   198 qed "ordertype_eq";
       
   199 
       
   200 Goal "[| ordertype(A,r) = ordertype(B,s); \
       
   201 \              well_ord(A,r);  well_ord(B,s) \
       
   202 \           |] ==> EX f. f: ord_iso(A,r,B,s)";
       
   203 by (rtac exI 1);
       
   204 by (resolve_tac [ordertype_ord_iso RS ord_iso_trans] 1);
       
   205 by (assume_tac 1);
       
   206 by (etac ssubst 1);
       
   207 by (eresolve_tac [ordertype_ord_iso RS ord_iso_sym] 1);
       
   208 qed "ordertype_eq_imp_ord_iso";
       
   209 
       
   210 (*** Basic equalities for ordertype ***)
       
   211 
       
   212 (*Ordertype of Memrel*)
       
   213 Goal "j le i ==> ordertype(j,Memrel(i)) = j";
       
   214 by (resolve_tac [Ord_iso_implies_eq RS sym] 1);
       
   215 by (etac ltE 1);
       
   216 by (REPEAT (ares_tac [le_well_ord_Memrel, Ord_ordertype] 1));
       
   217 by (rtac ord_iso_trans 1);
       
   218 by (eresolve_tac [le_well_ord_Memrel RS ordertype_ord_iso] 2);
       
   219 by (resolve_tac [id_bij RS ord_isoI] 1);
       
   220 by (Asm_simp_tac 1);
       
   221 by (fast_tac (claset() addEs [ltE, Ord_in_Ord, Ord_trans]) 1);
       
   222 qed "le_ordertype_Memrel";
       
   223 
       
   224 (*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*)
       
   225 bind_thm ("ordertype_Memrel", le_refl RS le_ordertype_Memrel);
       
   226 
       
   227 Goal "ordertype(0,r) = 0";
       
   228 by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq RS trans] 1);
       
   229 by (etac emptyE 1);
       
   230 by (rtac well_ord_0 1);
       
   231 by (resolve_tac [Ord_0 RS ordertype_Memrel] 1);
       
   232 qed "ordertype_0";
       
   233 
       
   234 Addsimps [ordertype_0];
       
   235 
       
   236 (*Ordertype of rvimage:  [| f: bij(A,B);  well_ord(B,s) |] ==>
       
   237                          ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *)
       
   238 bind_thm ("bij_ordertype_vimage", ord_iso_rvimage RS ordertype_eq);
       
   239 
       
   240 (*** A fundamental unfolding law for ordertype. ***)
       
   241 
       
   242 (*Ordermap returns the same result if applied to an initial segment*)
       
   243 Goal "[| well_ord(A,r);  y:A;  z: pred(A,y,r) |] ==>        \
       
   244 \         ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z";
       
   245 by (forward_tac [[well_ord_is_wf, pred_subset] MRS wf_on_subset_A] 1);
       
   246 by (wf_on_ind_tac "z" [] 1);
       
   247 by (safe_tac (claset() addSEs [predE]));
       
   248 by (asm_simp_tac
       
   249     (simpset() addsimps [ordermap_pred_unfold, well_ord_is_wf, pred_iff]) 1);
       
   250 (*combining these two simplifications LOOPS! *)
       
   251 by (asm_simp_tac (simpset() addsimps [pred_pred_eq]) 1);
       
   252 by (asm_full_simp_tac (simpset() addsimps [pred_def]) 1);
       
   253 by (rtac (refl RSN (2,RepFun_cong)) 1);
       
   254 by (dtac well_ord_is_trans_on 1);
       
   255 by (fast_tac (claset() addSEs [trans_onD]) 1);
       
   256 qed "ordermap_pred_eq_ordermap";
       
   257 
       
   258 Goalw [ordertype_def]
       
   259     "ordertype(A,r) = {ordermap(A,r)`y . y : A}";
       
   260 by (rtac ([ordermap_type, subset_refl] MRS image_fun) 1);
       
   261 qed "ordertype_unfold";
       
   262 
       
   263 (** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **)
       
   264 
       
   265 Goal "[| well_ord(A,r);  x:A |] ==>             \
       
   266 \         ordertype(pred(A,x,r),r) <= ordertype(A,r)";
       
   267 by (asm_simp_tac (simpset() addsimps [ordertype_unfold, 
       
   268                   pred_subset RSN (2, well_ord_subset)]) 1);
       
   269 by (fast_tac (claset() addIs [ordermap_pred_eq_ordermap]
       
   270                       addEs [predE]) 1);
       
   271 qed "ordertype_pred_subset";
       
   272 
       
   273 Goal "[| well_ord(A,r);  x:A |] ==>  \
       
   274 \         ordertype(pred(A,x,r),r) < ordertype(A,r)";
       
   275 by (resolve_tac [ordertype_pred_subset RS subset_imp_le RS leE] 1);
       
   276 by (REPEAT (ares_tac [Ord_ordertype, well_ord_subset, pred_subset] 1));
       
   277 by (eresolve_tac [sym RS ordertype_eq_imp_ord_iso RS exE] 1);
       
   278 by (etac well_ord_iso_predE 3);
       
   279 by (REPEAT (ares_tac [pred_subset, well_ord_subset] 1));
       
   280 qed "ordertype_pred_lt";
       
   281 
       
   282 (*May rewrite with this -- provided no rules are supplied for proving that
       
   283         well_ord(pred(A,x,r), r) *)
       
   284 Goal "well_ord(A,r) ==>  \
       
   285 \           ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}";
       
   286 by (rtac equalityI 1);
       
   287 by (safe_tac (claset() addSIs [ordertype_pred_lt RS ltD]));
       
   288 by (auto_tac (claset(), 
       
   289               simpset() addsimps [ordertype_def, 
       
   290                       well_ord_is_wf RS ordermap_eq_image, 
       
   291                       ordermap_type RS image_fun, 
       
   292                       ordermap_pred_eq_ordermap, 
       
   293                       pred_subset])); 
       
   294 qed "ordertype_pred_unfold";
       
   295 
       
   296 
       
   297 (**** Alternative definition of ordinal ****)
       
   298 
       
   299 (*proof by Krzysztof Grabczewski*)
       
   300 Goalw [Ord_alt_def] "Ord(i) ==> Ord_alt(i)";
       
   301 by (rtac conjI 1);
       
   302 by (etac well_ord_Memrel 1);
       
   303 by (rewrite_goals_tac [Ord_def, Transset_def, pred_def, Memrel_def]);
       
   304 by (Blast.depth_tac (claset()) 8 1);
       
   305 qed "Ord_is_Ord_alt";
       
   306 
       
   307 (*proof by lcp*)
       
   308 Goalw [Ord_alt_def, Ord_def, Transset_def, well_ord_def, 
       
   309                      tot_ord_def, part_ord_def, trans_on_def] 
       
   310     "Ord_alt(i) ==> Ord(i)";
       
   311 by (asm_full_simp_tac (simpset() addsimps [pred_Memrel]) 1);
       
   312 by (blast_tac (claset() addSEs [equalityE]) 1);
       
   313 qed "Ord_alt_is_Ord";
       
   314 
       
   315 
       
   316 (**** Ordinal Addition ****)
       
   317 
       
   318 (*** Order Type calculations for radd ***)
       
   319 
       
   320 (** Addition with 0 **)
       
   321 
       
   322 Goal "(lam z:A+0. case(%x. x, %y. y, z)) : bij(A+0, A)";
       
   323 by (res_inst_tac [("d", "Inl")] lam_bijective 1);
       
   324 by Safe_tac;
       
   325 by (ALLGOALS Asm_simp_tac);
       
   326 qed "bij_sum_0";
       
   327 
       
   328 Goal "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)";
       
   329 by (resolve_tac [bij_sum_0 RS ord_isoI RS ordertype_eq] 1);
       
   330 by (assume_tac 2);
       
   331 by (Force_tac 1);
       
   332 qed "ordertype_sum_0_eq";
       
   333 
       
   334 Goal "(lam z:0+A. case(%x. x, %y. y, z)) : bij(0+A, A)";
       
   335 by (res_inst_tac [("d", "Inr")] lam_bijective 1);
       
   336 by Safe_tac;
       
   337 by (ALLGOALS Asm_simp_tac);
       
   338 qed "bij_0_sum";
       
   339 
       
   340 Goal "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)";
       
   341 by (resolve_tac [bij_0_sum RS ord_isoI RS ordertype_eq] 1);
       
   342 by (assume_tac 2);
       
   343 by (Force_tac 1);
       
   344 qed "ordertype_0_sum_eq";
       
   345 
       
   346 (** Initial segments of radd.  Statements by Grabczewski **)
       
   347 
       
   348 (*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *)
       
   349 Goalw [pred_def]
       
   350  "a:A ==>  \
       
   351 \        (lam x:pred(A,a,r). Inl(x))    \
       
   352 \        : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))";
       
   353 by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1);
       
   354 by Auto_tac;
       
   355 qed "pred_Inl_bij";
       
   356 
       
   357 Goal "[| a:A;  well_ord(A,r) |] ==>  \
       
   358 \        ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = \
       
   359 \        ordertype(pred(A,a,r), r)";
       
   360 by (resolve_tac [pred_Inl_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1);
       
   361 by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_subset]));
       
   362 by (asm_full_simp_tac (simpset() addsimps [pred_def]) 1);
       
   363 qed "ordertype_pred_Inl_eq";
       
   364 
       
   365 Goalw [pred_def, id_def]
       
   366  "b:B ==>  \
       
   367 \        id(A+pred(B,b,s))      \
       
   368 \        : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))";
       
   369 by (res_inst_tac [("d", "%z. z")] lam_bijective 1);
       
   370 by Safe_tac;
       
   371 by (ALLGOALS (Asm_full_simp_tac));
       
   372 qed "pred_Inr_bij";
       
   373 
       
   374 Goal "[| b:B;  well_ord(A,r);  well_ord(B,s) |] ==>  \
       
   375 \        ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = \
       
   376 \        ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))";
       
   377 by (resolve_tac [pred_Inr_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1);
       
   378 by (force_tac (claset(), simpset() addsimps [pred_def, id_def]) 2);
       
   379 by (REPEAT_FIRST (ares_tac [well_ord_radd, pred_subset, well_ord_subset]));
       
   380 qed "ordertype_pred_Inr_eq";
       
   381 
       
   382 
       
   383 (*** ordify: trivial coercion to an ordinal ***)
       
   384 
       
   385 Goal "Ord(ordify(x))";
       
   386 by (asm_full_simp_tac (simpset() addsimps [ordify_def]) 1); 
       
   387 qed "Ord_ordify";
       
   388 AddIffs [Ord_ordify];
       
   389 AddTCs [Ord_ordify];
       
   390 
       
   391 (*Collapsing*)
       
   392 Goal "ordify(ordify(x)) = ordify(x)";
       
   393 by (asm_full_simp_tac (simpset() addsimps [ordify_def]) 1);
       
   394 qed "ordify_idem";
       
   395 Addsimps [ordify_idem];
       
   396 
       
   397 
       
   398 (*** Basic laws for ordinal addition ***)
       
   399 
       
   400 Goal "[|Ord(i); Ord(j)|] ==> Ord(raw_oadd(i,j))";
       
   401 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Ord_ordertype, well_ord_radd, well_ord_Memrel]) 1); 
       
   402 qed "Ord_raw_oadd";
       
   403 
       
   404 Goal "Ord(i++j)";
       
   405 by (asm_full_simp_tac (simpset() addsimps [oadd_def, Ord_raw_oadd]) 1); 
       
   406 qed "Ord_oadd";
       
   407 AddIffs [Ord_oadd]; AddTCs [Ord_oadd];
       
   408 
       
   409 
       
   410 (** Ordinal addition with zero **)
       
   411 
       
   412 Goal "Ord(i) ==> raw_oadd(i,0) = i";
       
   413 by (asm_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Memrel_0, ordertype_sum_0_eq, 
       
   414                                   ordertype_Memrel, well_ord_Memrel]) 1);
       
   415 qed "raw_oadd_0";
       
   416 
       
   417 Goal "Ord(i) ==> i++0 = i";
       
   418 by (asm_simp_tac (simpset() addsimps [oadd_def, raw_oadd_0, ordify_def]) 1);
       
   419 qed "oadd_0";
       
   420 Addsimps [oadd_0];
       
   421 
       
   422 Goal "Ord(i) ==> raw_oadd(0,i) = i";
       
   423 by (asm_simp_tac (simpset() addsimps [raw_oadd_def, ordify_def, Memrel_0, ordertype_0_sum_eq, 
       
   424                                   ordertype_Memrel, well_ord_Memrel]) 1);
       
   425 qed "raw_oadd_0_left";
       
   426 
       
   427 Goal "Ord(i) ==> 0++i = i";
       
   428 by (asm_simp_tac (simpset() addsimps [oadd_def, raw_oadd_0_left, ordify_def]) 1);
       
   429 qed "oadd_0_left";
       
   430 Addsimps [oadd_0_left];
       
   431 
       
   432 
       
   433 Goal "i++j = (if Ord(i) then (if Ord(j) then raw_oadd(i,j) else i) \
       
   434 \                       else (if Ord(j) then j else 0))";
       
   435 by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, raw_oadd_0_left, raw_oadd_0]) 1);
       
   436 qed "oadd_eq_if_raw_oadd";
       
   437 
       
   438 
       
   439 Goal "[|Ord(i); Ord(j)|] ==> raw_oadd(i,j) = i++j";
       
   440 by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def]) 1);
       
   441 qed "raw_oadd_eq_oadd";
       
   442 
       
   443 (*** Further properties of ordinal addition.  Statements by Grabczewski,
       
   444     proofs by lcp. ***)
       
   445 
       
   446 (*Surely also provable by transfinite induction on j?*)
       
   447 Goal "k<i ==> k < i++j";
       
   448 by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, lt_Ord2, raw_oadd_0]) 1);
       
   449 by (Clarify_tac 1);  
       
   450 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def]) 1); 
       
   451 by (rtac ltE 1 THEN assume_tac 1);
       
   452 by (rtac ltI 1);
       
   453 by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 2));
       
   454 by (force_tac 
       
   455     (claset(),
       
   456      simpset() addsimps [ordertype_pred_unfold, 
       
   457                         well_ord_radd, well_ord_Memrel,
       
   458                         ordertype_pred_Inl_eq, 
       
   459                         lt_pred_Memrel, leI RS le_ordertype_Memrel]) 1);
       
   460 qed "lt_oadd1";
       
   461 
       
   462 (*Thus also we obtain the rule  i++j = k ==> i le k *)
       
   463 Goal "Ord(i) ==> i le i++j";
       
   464 by (rtac all_lt_imp_le 1);
       
   465 by (REPEAT (ares_tac [Ord_oadd, lt_oadd1] 1));
       
   466 qed "oadd_le_self";
       
   467 
       
   468 (** A couple of strange but necessary results! **)
       
   469 
       
   470 Goal "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))";
       
   471 by (resolve_tac [id_bij RS ord_isoI] 1);
       
   472 by (Asm_simp_tac 1);
       
   473 by (Blast_tac 1);
       
   474 qed "id_ord_iso_Memrel";
       
   475 
       
   476 Goal "[| well_ord(A,r);  k<j |] ==>                 \
       
   477 \            ordertype(A+k, radd(A, r, k, Memrel(j))) = \
       
   478 \            ordertype(A+k, radd(A, r, k, Memrel(k)))";
       
   479 by (etac ltE 1);
       
   480 by (resolve_tac [ord_iso_refl RS sum_ord_iso_cong RS ordertype_eq] 1);
       
   481 by (eresolve_tac [OrdmemD RS id_ord_iso_Memrel RS ord_iso_sym] 1);
       
   482 by (REPEAT_FIRST (ares_tac [well_ord_radd, well_ord_Memrel]));
       
   483 qed "ordertype_sum_Memrel";
       
   484 
       
   485 Goal "k<j ==> i++k < i++j";
       
   486 by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, raw_oadd_0_left, lt_Ord, lt_Ord2]) 1);
       
   487 by (Clarify_tac 1);  
       
   488 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def]) 1); 
       
   489 by (rtac ltE 1 THEN assume_tac 1);
       
   490 by (resolve_tac [ordertype_pred_unfold RS equalityD2 RS subsetD RS ltI] 1);
       
   491 by (REPEAT_FIRST (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel]));
       
   492 by (rtac RepFun_eqI 1);
       
   493 by (etac InrI 2);
       
   494 by (asm_simp_tac 
       
   495     (simpset() addsimps [ordertype_pred_Inr_eq, well_ord_Memrel, 
       
   496                      lt_pred_Memrel, leI RS le_ordertype_Memrel,
       
   497                      ordertype_sum_Memrel]) 1);
       
   498 qed "oadd_lt_mono2";
       
   499 
       
   500 Goal "[| i++j < i++k;  Ord(j) |] ==> j<k";
       
   501 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd] addsplits [split_if_asm]) 1); 
       
   502 by (forw_inst_tac [("i","i"),("j","j")] oadd_le_self 2); 
       
   503 by (asm_full_simp_tac (simpset() addsimps [oadd_def, ordify_def, lt_Ord, not_lt_iff_le RS iff_sym]) 2);
       
   504 by (rtac Ord_linear_lt 1);
       
   505 by (REPEAT_SOME assume_tac);
       
   506 by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]))); 
       
   507 by (ALLGOALS
       
   508     (blast_tac (claset() addDs [oadd_lt_mono2] addEs [lt_irrefl, lt_asym])));
       
   509 qed "oadd_lt_cancel2";
       
   510 
       
   511 Goal "Ord(j) ==> i++j < i++k <-> j<k";
       
   512 by (blast_tac (claset() addSIs [oadd_lt_mono2] addSDs [oadd_lt_cancel2]) 1);
       
   513 qed "oadd_lt_iff2";
       
   514 
       
   515 Goal "[| i++j = i++k;  Ord(j); Ord(k) |] ==> j=k";
       
   516 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd] addsplits [split_if_asm]) 1); 
       
   517 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); 
       
   518 by (rtac Ord_linear_lt 1);
       
   519 by (REPEAT_SOME assume_tac);
       
   520 by (ALLGOALS
       
   521     (force_tac (claset() addDs [inst "i" "i" oadd_lt_mono2],
       
   522                 simpset() addsimps [lt_not_refl])));
       
   523 qed "oadd_inject";
       
   524 
       
   525 Goal "k < i++j ==> k<i | (EX l:j. k = i++l )";
       
   526 by (asm_full_simp_tac (simpset() addsimps [inst "i" "j" Ord_in_Ord', oadd_eq_if_raw_oadd] addsplits [split_if_asm]) 1); 
       
   527 by (asm_full_simp_tac 
       
   528     (simpset() addsimps [inst "i" "j" Ord_in_Ord', lt_def]) 2);
       
   529 by (asm_full_simp_tac (simpset() addsimps [ordertype_pred_unfold, well_ord_radd,
       
   530                      well_ord_Memrel, raw_oadd_def]) 1); 
       
   531 by (eresolve_tac [ltD RS RepFunE] 1);
       
   532 by (force_tac (claset(),
       
   533               simpset() addsimps [ordertype_pred_Inl_eq, well_ord_Memrel, 
       
   534                                ltI, lt_pred_Memrel, le_ordertype_Memrel, leI,
       
   535                                ordertype_pred_Inr_eq, 
       
   536                                ordertype_sum_Memrel]) 1);
       
   537 qed "lt_oadd_disj";
       
   538 
       
   539 
       
   540 (*** Ordinal addition with successor -- via associativity! ***)
       
   541 
       
   542 Goal "(i++j)++k = i++(j++k)";
       
   543 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd, Ord_raw_oadd, raw_oadd_0, raw_oadd_0_left]) 1); 
       
   544 by (Clarify_tac 1); 
       
   545 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def]) 1); 
       
   546 by (resolve_tac [ordertype_eq RS trans] 1);
       
   547 by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS 
       
   548           sum_ord_iso_cong) 1);
       
   549 by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1));
       
   550 by (resolve_tac [sum_assoc_ord_iso RS ordertype_eq RS trans] 1);
       
   551 by (rtac ([ord_iso_refl, ordertype_ord_iso] MRS sum_ord_iso_cong RS 
       
   552           ordertype_eq) 2);
       
   553 by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1));
       
   554 qed "oadd_assoc";
       
   555 
       
   556 Goal "[| Ord(i);  Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})";
       
   557 by (rtac (subsetI RS equalityI) 1);
       
   558 by (eresolve_tac [ltI RS lt_oadd_disj RS disjE] 1);
       
   559 by (REPEAT (ares_tac [Ord_oadd] 1));
       
   560 by (force_tac (claset() addIs [lt_oadd1, oadd_lt_mono2],
       
   561               simpset() addsimps [Ord_mem_iff_lt]) 3);
       
   562 by (Blast_tac 2);
       
   563 by (blast_tac (claset() addSEs [ltE]) 1);
       
   564 qed "oadd_unfold";
       
   565 
       
   566 Goal "Ord(i) ==> i++1 = succ(i)";
       
   567 by (asm_simp_tac (simpset() addsimps [oadd_unfold, Ord_1, oadd_0]) 1);
       
   568 by (Blast_tac 1);
       
   569 qed "oadd_1";
       
   570 
       
   571 Goal "Ord(j) ==> i++succ(j) = succ(i++j)";
       
   572 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1); 
       
   573 by (Clarify_tac 1); 
       
   574 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); 
       
   575 by (asm_simp_tac (simpset() 
       
   576 		 addsimps [inst "i" "j" oadd_1 RS sym, inst "i" "i++j" oadd_1 RS sym, oadd_assoc]) 1);
       
   577 qed "oadd_succ";
       
   578 Addsimps [oadd_succ];
       
   579 
       
   580 
       
   581 (** Ordinal addition with limit ordinals **)
       
   582 
       
   583 val prems = 
       
   584 Goal "[| !!x. x:A ==> Ord(j(x));  a:A |] ==> \
       
   585 \     i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))";
       
   586 by (blast_tac (claset() addIs prems @ [ltI, Ord_UN, Ord_oadd, 
       
   587 				       lt_oadd1 RS ltD, oadd_lt_mono2 RS ltD]
       
   588                         addSEs [ltE] addSDs [ltI RS lt_oadd_disj]) 1);
       
   589 qed "oadd_UN";
       
   590 
       
   591 Goal "Limit(j) ==> i++j = (UN k:j. i++k)";
       
   592 by (forward_tac [Limit_has_0 RS ltD] 1);
       
   593 by (asm_simp_tac (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord,
       
   594 				      oadd_UN RS sym, Union_eq_UN RS sym, 
       
   595 				      Limit_Union_eq]) 1);
       
   596 qed "oadd_Limit";
       
   597 
       
   598 (** Order/monotonicity properties of ordinal addition **)
       
   599 
       
   600 Goal "Ord(i) ==> i le j++i";
       
   601 by (eres_inst_tac [("i","i")] trans_induct3 1);
       
   602 by (asm_simp_tac (simpset() addsimps [Ord_0_le]) 1);
       
   603 by (asm_simp_tac (simpset() addsimps [oadd_succ, succ_leI]) 1);
       
   604 by (asm_simp_tac (simpset() addsimps [oadd_Limit]) 1);
       
   605 by (rtac le_trans 1);
       
   606 by (rtac le_implies_UN_le_UN 2);
       
   607 by (etac bspec 2); 
       
   608 by (assume_tac 2); 
       
   609 by (asm_simp_tac (simpset() addsimps [Union_eq_UN RS sym, Limit_Union_eq, 
       
   610                                      le_refl, Limit_is_Ord]) 1);
       
   611 qed "oadd_le_self2";
       
   612 
       
   613 Goal "k le j ==> k++i le j++i";
       
   614 by (ftac lt_Ord 1);
       
   615 by (ftac le_Ord2 1);
       
   616 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1);
       
   617 by (Clarify_tac 1); 
       
   618 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_eq_oadd]) 1); 
       
   619 by (eres_inst_tac [("i","i")] trans_induct3 1);
       
   620 by (Asm_simp_tac 1);
       
   621 by (asm_simp_tac (simpset() addsimps [oadd_succ, succ_le_iff]) 1);
       
   622 by (asm_simp_tac (simpset() addsimps [oadd_Limit]) 1);
       
   623 by (rtac le_implies_UN_le_UN 1);
       
   624 by (Blast_tac 1);
       
   625 qed "oadd_le_mono1";
       
   626 
       
   627 Goal "[| i' le i;  j'<j |] ==> i'++j' < i++j";
       
   628 by (rtac lt_trans1 1);
       
   629 by (REPEAT (eresolve_tac [asm_rl, oadd_le_mono1, oadd_lt_mono2, ltE,
       
   630                           Ord_succD] 1));
       
   631 qed "oadd_lt_mono";
       
   632 
       
   633 Goal "[| i' le i;  j' le j |] ==> i'++j' le i++j";
       
   634 by (asm_simp_tac (simpset() delsimps [oadd_succ]
       
   635 		   addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1);
       
   636 qed "oadd_le_mono";
       
   637 
       
   638 Goal "[| Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k";
       
   639 by (asm_simp_tac (simpset() delsimps [oadd_succ]
       
   640 			    addsimps [oadd_lt_iff2, oadd_succ RS sym, Ord_succ]) 1);
       
   641 qed "oadd_le_iff2";
       
   642 
       
   643 
       
   644 (** Ordinal subtraction; the difference is ordertype(j-i, Memrel(j)). 
       
   645     Probably simpler to define the difference recursively!
       
   646 **)
       
   647 
       
   648 Goal "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))";
       
   649 by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1);
       
   650 by (blast_tac (claset() addSIs [if_type]) 1);
       
   651 by (fast_tac (claset() addSIs [case_type]) 1);
       
   652 by (etac sumE 2);
       
   653 by (ALLGOALS Asm_simp_tac);
       
   654 qed "bij_sum_Diff";
       
   655 
       
   656 Goal "i le j ==>  \
       
   657 \           ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) =       \
       
   658 \           ordertype(j, Memrel(j))";
       
   659 by (safe_tac (claset() addSDs [le_subset_iff RS iffD1]));
       
   660 by (resolve_tac [bij_sum_Diff RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1);
       
   661 by (etac well_ord_Memrel 3);
       
   662 by (assume_tac 1);
       
   663 by (Asm_simp_tac 1);
       
   664 by (forw_inst_tac [("j", "y")] Ord_in_Ord 1 THEN assume_tac 1);
       
   665 by (forw_inst_tac [("j", "x")] Ord_in_Ord 1 THEN assume_tac 1);
       
   666 by (asm_simp_tac (simpset() addsimps [Ord_mem_iff_lt, lt_Ord, not_lt_iff_le]) 1);
       
   667 by (blast_tac (claset() addIs [lt_trans2, lt_trans]) 1);
       
   668 qed "ordertype_sum_Diff";
       
   669 
       
   670 Goalw [odiff_def] 
       
   671     "[| Ord(i);  Ord(j) |] ==> Ord(i--j)";
       
   672 by (REPEAT (ares_tac [Ord_ordertype, well_ord_Memrel RS well_ord_subset, 
       
   673                       Diff_subset] 1));
       
   674 qed "Ord_odiff";
       
   675 Addsimps [Ord_odiff]; AddTCs [Ord_odiff];
       
   676 
       
   677 
       
   678 Goal
       
   679     "i le j  \
       
   680 \    ==> raw_oadd(i,j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))";
       
   681 by (asm_full_simp_tac (simpset() addsimps [raw_oadd_def, odiff_def]) 1); 
       
   682 by (safe_tac (claset() addSDs [le_subset_iff RS iffD1]));
       
   683 by (resolve_tac [sum_ord_iso_cong RS ordertype_eq] 1);
       
   684 by (etac id_ord_iso_Memrel 1);
       
   685 by (resolve_tac [ordertype_ord_iso RS ord_iso_sym] 1);
       
   686 by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel RS well_ord_subset,
       
   687                       Diff_subset] 1));
       
   688 qed "raw_oadd_ordertype_Diff";
       
   689 
       
   690 Goal "i le j ==> i ++ (j--i) = j";
       
   691 by (asm_simp_tac (simpset() addsimps [lt_Ord, le_Ord2, oadd_def, ordify_def, raw_oadd_ordertype_Diff, ordertype_sum_Diff, 
       
   692                                   ordertype_Memrel, lt_Ord2 RS Ord_succD]) 1);
       
   693 qed "oadd_odiff_inverse";
       
   694 
       
   695 (*By oadd_inject, the difference between i and j is unique.  Note that we get
       
   696   i++j = k  ==>  j = k--i.  *)
       
   697 Goal "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j";
       
   698 by (rtac oadd_inject 1);
       
   699 by (REPEAT (ares_tac [Ord_ordertype, Ord_oadd, Ord_odiff] 2));
       
   700 by (blast_tac (claset() addIs [oadd_odiff_inverse, oadd_le_self]) 1); 
       
   701 qed "odiff_oadd_inverse";
       
   702 
       
   703 Goal "[| i<j;  k le i |] ==> i--k < j--k";
       
   704 by (res_inst_tac [("i","k")] oadd_lt_cancel2 1);
       
   705 by (asm_full_simp_tac (simpset() addsimps [oadd_odiff_inverse]) 1); 
       
   706 by (stac oadd_odiff_inverse 1); 
       
   707 by (blast_tac (claset() addIs [le_trans, leI]) 1); 
       
   708 by (assume_tac 1); 
       
   709 by (asm_simp_tac (simpset() addsimps [lt_Ord, le_Ord2]) 1);
       
   710 qed "odiff_lt_mono2";
       
   711 
       
   712 
       
   713 (**** Ordinal Multiplication ****)
       
   714 
       
   715 Goalw [omult_def] 
       
   716     "[| Ord(i);  Ord(j) |] ==> Ord(i**j)";
       
   717 by (REPEAT (ares_tac [Ord_ordertype, well_ord_rmult, well_ord_Memrel] 1));
       
   718 qed "Ord_omult";
       
   719 Addsimps [Ord_omult]; AddTCs [Ord_omult];
       
   720 
       
   721 (*** A useful unfolding law ***)
       
   722 
       
   723 Goalw [pred_def]
       
   724  "[| a:A;  b:B |] ==> pred(A*B, <a,b>, rmult(A,r,B,s)) =     \
       
   725 \                     pred(A,a,r)*B Un ({a} * pred(B,b,s))";
       
   726 by (Blast_tac 1);
       
   727 qed "pred_Pair_eq";
       
   728 
       
   729 Goal "[| a:A;  b:B;  well_ord(A,r);  well_ord(B,s) |] ==>           \
       
   730 \        ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) = \
       
   731 \        ordertype(pred(A,a,r)*B + pred(B,b,s),                        \
       
   732 \                 radd(A*B, rmult(A,r,B,s), B, s))";
       
   733 by (asm_simp_tac (simpset() addsimps [pred_Pair_eq]) 1);
       
   734 by (resolve_tac [ordertype_eq RS sym] 1);
       
   735 by (rtac prod_sum_singleton_ord_iso 1);
       
   736 by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_rmult RS well_ord_subset]));
       
   737 by (blast_tac (claset() addSEs [predE]) 1);
       
   738 qed "ordertype_pred_Pair_eq";
       
   739 
       
   740 Goalw [raw_oadd_def, omult_def]
       
   741  "[| i'<i;  j'<j |] ==>                                         \
       
   742 \        ordertype(pred(i*j, <i',j'>, rmult(i,Memrel(i),j,Memrel(j))), \
       
   743 \                  rmult(i,Memrel(i),j,Memrel(j))) =                   \
       
   744 \        raw_oadd (j**i', j')";
       
   745 by (asm_simp_tac (simpset() addsimps [ordertype_pred_Pair_eq, lt_pred_Memrel, 
       
   746 				     ltD, lt_Ord2, well_ord_Memrel]) 1);
       
   747 by (rtac trans 1);
       
   748 by (resolve_tac [ordertype_ord_iso RS sum_ord_iso_cong RS ordertype_eq] 2);
       
   749 by (rtac ord_iso_refl 3);
       
   750 by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq] 1);
       
   751 by (REPEAT_FIRST (eresolve_tac [SigmaE, sumE, ltE, ssubst]));
       
   752 by (REPEAT_FIRST (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, 
       
   753                             Ord_ordertype]));
       
   754 by (ALLGOALS Asm_simp_tac);
       
   755 by Safe_tac;
       
   756 by (ALLGOALS (blast_tac (claset() addIs [Ord_trans])));
       
   757 qed "ordertype_pred_Pair_lemma";
       
   758 
       
   759 Goalw [omult_def]
       
   760  "[| Ord(i);  Ord(j);  k<j**i |] ==>  \
       
   761 \        EX j' i'. k = j**i' ++ j' & j'<j & i'<i";
       
   762 by (asm_full_simp_tac (simpset() addsimps [ordertype_pred_unfold, 
       
   763                                        well_ord_rmult, well_ord_Memrel]) 1);
       
   764 by (safe_tac (claset() addSEs [ltE]));
       
   765 by (asm_simp_tac (simpset() addsimps [ordertype_pred_Pair_lemma, ltI,
       
   766 				     symmetric omult_def, 
       
   767            inst "i" "i" Ord_in_Ord', inst "i" "j" Ord_in_Ord', raw_oadd_eq_oadd]) 1);
       
   768 by (blast_tac (claset() addIs [ltI]) 1);
       
   769 qed "lt_omult";
       
   770 
       
   771 Goalw [omult_def]
       
   772  "[| j'<j;  i'<i |] ==> j**i' ++ j'  <  j**i";
       
   773 by (rtac ltI 1);
       
   774 by (asm_simp_tac
       
   775     (simpset() addsimps [Ord_ordertype, well_ord_rmult, well_ord_Memrel, 
       
   776                         lt_Ord2]) 2);
       
   777 by (asm_simp_tac 
       
   778     (simpset() addsimps [ordertype_pred_unfold, 
       
   779                      well_ord_rmult, well_ord_Memrel, lt_Ord2]) 1);
       
   780 by (rtac bexI 1);
       
   781 by (blast_tac (claset() addSEs [ltE]) 2);
       
   782 by (asm_simp_tac 
       
   783     (simpset() addsimps [ordertype_pred_Pair_lemma, ltI,
       
   784                         symmetric omult_def]) 1);
       
   785 by (asm_simp_tac (simpset() addsimps [
       
   786            lt_Ord, lt_Ord2, raw_oadd_eq_oadd]) 1);
       
   787 qed "omult_oadd_lt";
       
   788 
       
   789 Goal "[| Ord(i);  Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})";
       
   790 by (rtac (subsetI RS equalityI) 1);
       
   791 by (resolve_tac [lt_omult RS exE] 1);
       
   792 by (etac ltI 3);
       
   793 by (REPEAT (ares_tac [Ord_omult] 1));
       
   794 by (blast_tac (claset() addSEs [ltE]) 1);
       
   795 by (blast_tac (claset() addIs [omult_oadd_lt RS ltD, ltI]) 1);
       
   796 qed "omult_unfold";
       
   797 
       
   798 (*** Basic laws for ordinal multiplication ***)
       
   799 
       
   800 (** Ordinal multiplication by zero **)
       
   801 
       
   802 Goalw [omult_def] "i**0 = 0";
       
   803 by (Asm_simp_tac 1);
       
   804 qed "omult_0";
       
   805 
       
   806 Goalw [omult_def] "0**i = 0";
       
   807 by (Asm_simp_tac 1);
       
   808 qed "omult_0_left";
       
   809 
       
   810 Addsimps [omult_0, omult_0_left];
       
   811 
       
   812 (** Ordinal multiplication by 1 **)
       
   813 
       
   814 Goalw [omult_def] "Ord(i) ==> i**1 = i";
       
   815 by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1);
       
   816 by (res_inst_tac [("c", "snd"), ("d", "%z.<0,z>")] lam_bijective 1);
       
   817 by (REPEAT_FIRST (eresolve_tac [snd_type, SigmaE, succE, emptyE, 
       
   818                                 well_ord_Memrel, ordertype_Memrel]));
       
   819 by (ALLGOALS Asm_simp_tac);
       
   820 qed "omult_1";
       
   821 
       
   822 Goalw [omult_def] "Ord(i) ==> 1**i = i";
       
   823 by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1);
       
   824 by (res_inst_tac [("c", "fst"), ("d", "%z.<z,0>")] lam_bijective 1);
       
   825 by (REPEAT_FIRST (eresolve_tac [fst_type, SigmaE, succE, emptyE, 
       
   826                                 well_ord_Memrel, ordertype_Memrel]));
       
   827 by (ALLGOALS Asm_simp_tac);
       
   828 qed "omult_1_left";
       
   829 
       
   830 Addsimps [omult_1, omult_1_left];
       
   831 
       
   832 (** Distributive law for ordinal multiplication and addition **)
       
   833 
       
   834 Goal "[| Ord(i);  Ord(j);  Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)";
       
   835 by (asm_full_simp_tac (simpset() addsimps [oadd_eq_if_raw_oadd]) 1); 
       
   836 by (asm_full_simp_tac (simpset() addsimps [omult_def, raw_oadd_def]) 1); 
       
   837 by (resolve_tac [ordertype_eq RS trans] 1);
       
   838 by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS 
       
   839           prod_ord_iso_cong) 1);
       
   840 by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, 
       
   841                       Ord_ordertype] 1));
       
   842 by (rtac (sum_prod_distrib_ord_iso RS ordertype_eq RS trans) 1);
       
   843 by (rtac ordertype_eq 2);
       
   844 by (rtac ([ordertype_ord_iso, ordertype_ord_iso] MRS sum_ord_iso_cong) 2);
       
   845 by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, 
       
   846                       Ord_ordertype] 1));
       
   847 qed "oadd_omult_distrib";
       
   848 
       
   849 Goal "[| Ord(i);  Ord(j) |] ==> i**succ(j) = (i**j)++i";
       
   850 by (asm_simp_tac (simpset() 
       
   851 		 delsimps [oadd_succ]
       
   852 		 addsimps [inst "i" "j" oadd_1 RS sym, oadd_omult_distrib]) 1);
       
   853 qed "omult_succ";
       
   854 
       
   855 (** Associative law **)
       
   856 
       
   857 Goalw [omult_def]
       
   858     "[| Ord(i);  Ord(j);  Ord(k) |] ==> (i**j)**k = i**(j**k)";
       
   859 by (resolve_tac [ordertype_eq RS trans] 1);
       
   860 by (rtac ([ord_iso_refl, ordertype_ord_iso RS ord_iso_sym] MRS 
       
   861           prod_ord_iso_cong) 1);
       
   862 by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));
       
   863 by (resolve_tac [prod_assoc_ord_iso RS ord_iso_sym RS 
       
   864                  ordertype_eq RS trans] 1);
       
   865 by (rtac ([ordertype_ord_iso, ord_iso_refl] MRS prod_ord_iso_cong RS
       
   866           ordertype_eq) 2);
       
   867 by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Ord_ordertype] 1));
       
   868 qed "omult_assoc";
       
   869 
       
   870 
       
   871 (** Ordinal multiplication with limit ordinals **)
       
   872 
       
   873 val prems = 
       
   874 Goal "[| Ord(i);  !!x. x:A ==> Ord(j(x)) |] ==> \
       
   875 \     i ** (UN x:A. j(x)) = (UN x:A. i**j(x))";
       
   876 by (asm_simp_tac (simpset() addsimps prems @ [Ord_UN, omult_unfold]) 1);
       
   877 by (Blast_tac 1);
       
   878 qed "omult_UN";
       
   879 
       
   880 Goal "[| Ord(i);  Limit(j) |] ==> i**j = (UN k:j. i**k)";
       
   881 by (asm_simp_tac 
       
   882     (simpset() addsimps [Limit_is_Ord RS Ord_in_Ord, omult_UN RS sym, 
       
   883                      Union_eq_UN RS sym, Limit_Union_eq]) 1);
       
   884 qed "omult_Limit";
       
   885 
       
   886 
       
   887 (*** Ordering/monotonicity properties of ordinal multiplication ***)
       
   888 
       
   889 (*As a special case we have "[| 0<i;  0<j |] ==> 0 < i**j" *)
       
   890 Goal "[| k<i;  0<j |] ==> k < i**j";
       
   891 by (safe_tac (claset() addSEs [ltE] addSIs [ltI, Ord_omult]));
       
   892 by (asm_simp_tac (simpset() addsimps [omult_unfold]) 1);
       
   893 by (REPEAT_FIRST (ares_tac [bexI]));
       
   894 by (Asm_simp_tac 1);
       
   895 qed "lt_omult1";
       
   896 
       
   897 Goal "[| Ord(i);  0<j |] ==> i le i**j";
       
   898 by (rtac all_lt_imp_le 1);
       
   899 by (REPEAT (ares_tac [Ord_omult, lt_omult1, lt_Ord2] 1));
       
   900 qed "omult_le_self";
       
   901 
       
   902 Goal "[| k le j;  Ord(i) |] ==> k**i le j**i";
       
   903 by (ftac lt_Ord 1);
       
   904 by (ftac le_Ord2 1);
       
   905 by (etac trans_induct3 1);
       
   906 by (asm_simp_tac (simpset() addsimps [le_refl, Ord_0]) 1);
       
   907 by (asm_simp_tac (simpset() addsimps [omult_succ, oadd_le_mono]) 1);
       
   908 by (asm_simp_tac (simpset() addsimps [omult_Limit]) 1);
       
   909 by (rtac le_implies_UN_le_UN 1);
       
   910 by (Blast_tac 1);
       
   911 qed "omult_le_mono1";
       
   912 
       
   913 Goal "[| k<j;  0<i |] ==> i**k < i**j";
       
   914 by (rtac ltI 1);
       
   915 by (asm_simp_tac (simpset() addsimps [omult_unfold, lt_Ord2]) 1);
       
   916 by (safe_tac (claset() addSEs [ltE] addSIs [Ord_omult]));
       
   917 by (REPEAT_FIRST (ares_tac [bexI]));
       
   918 by (asm_simp_tac (simpset() addsimps [Ord_omult]) 1);
       
   919 qed "omult_lt_mono2";
       
   920 
       
   921 Goal "[| k le j;  Ord(i) |] ==> i**k le i**j";
       
   922 by (rtac subset_imp_le 1);
       
   923 by (safe_tac (claset() addSEs [ltE, make_elim Ord_succD] addSIs [Ord_omult]));
       
   924 by (asm_full_simp_tac (simpset() addsimps [omult_unfold]) 1);
       
   925 by (deepen_tac (claset() addEs [Ord_trans]) 0 1);
       
   926 qed "omult_le_mono2";
       
   927 
       
   928 Goal "[| i' le i;  j' le j |] ==> i'**j' le i**j";
       
   929 by (rtac le_trans 1);
       
   930 by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_le_mono2, ltE,
       
   931                           Ord_succD] 1));
       
   932 qed "omult_le_mono";
       
   933 
       
   934 Goal "[| i' le i;  j'<j;  0<i |] ==> i'**j' < i**j";
       
   935 by (rtac lt_trans1 1);
       
   936 by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_lt_mono2, ltE,
       
   937                           Ord_succD] 1));
       
   938 qed "omult_lt_mono";
       
   939 
       
   940 Goal "[| Ord(i);  0<j |] ==> i le j**i";
       
   941 by (ftac lt_Ord2 1);
       
   942 by (eres_inst_tac [("i","i")] trans_induct3 1);
       
   943 by (Asm_simp_tac 1);
       
   944 by (asm_simp_tac (simpset() addsimps [omult_succ]) 1);
       
   945 by (etac lt_trans1 1);
       
   946 by (res_inst_tac [("b", "j**x")] (oadd_0 RS subst) 1 THEN 
       
   947     rtac oadd_lt_mono2 2);
       
   948 by (REPEAT (ares_tac [Ord_omult] 1));
       
   949 by (asm_simp_tac (simpset() addsimps [omult_Limit]) 1);
       
   950 by (rtac le_trans 1);
       
   951 by (rtac le_implies_UN_le_UN 2);
       
   952 by (Blast_tac 2);
       
   953 by (asm_simp_tac (simpset() addsimps [Union_eq_UN RS sym, Limit_Union_eq, 
       
   954                                      Limit_is_Ord]) 1);
       
   955 qed "omult_le_self2";
       
   956 
       
   957 
       
   958 (** Further properties of ordinal multiplication **)
       
   959 
       
   960 Goal "[| i**j = i**k;  0<i;  Ord(j);  Ord(k) |] ==> j=k";
       
   961 by (rtac Ord_linear_lt 1);
       
   962 by (REPEAT_SOME assume_tac);
       
   963 by (ALLGOALS
       
   964     (force_tac (claset() addDs [omult_lt_mono2],
       
   965                 simpset() addsimps [lt_not_refl])));
       
   966 qed "omult_inject";
       
   967