src/HOL/Multivariate_Analysis/Caratheodory.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
equal deleted inserted replaced
63626:44ce6b524ff3 63627:6ddb43c6b711
     1 (*  Title:      HOL/Probability/Caratheodory.thy
       
     2     Author:     Lawrence C Paulson
       
     3     Author:     Johannes Hölzl, TU München
       
     4 *)
       
     5 
       
     6 section \<open>Caratheodory Extension Theorem\<close>
       
     7 
       
     8 theory Caratheodory
       
     9   imports Measure_Space
       
    10 begin
       
    11 
       
    12 text \<open>
       
    13   Originally from the Hurd/Coble measure theory development, translated by Lawrence Paulson.
       
    14 \<close>
       
    15 
       
    16 lemma suminf_ennreal_2dimen:
       
    17   fixes f:: "nat \<times> nat \<Rightarrow> ennreal"
       
    18   assumes "\<And>m. g m = (\<Sum>n. f (m,n))"
       
    19   shows "(\<Sum>i. f (prod_decode i)) = suminf g"
       
    20 proof -
       
    21   have g_def: "g = (\<lambda>m. (\<Sum>n. f (m,n)))"
       
    22     using assms by (simp add: fun_eq_iff)
       
    23   have reindex: "\<And>B. (\<Sum>x\<in>B. f (prod_decode x)) = setsum f (prod_decode ` B)"
       
    24     by (simp add: setsum.reindex[OF inj_prod_decode] comp_def)
       
    25   have "(SUP n. \<Sum>i<n. f (prod_decode i)) = (SUP p : UNIV \<times> UNIV. \<Sum>i<fst p. \<Sum>n<snd p. f (i, n))"
       
    26   proof (intro SUP_eq; clarsimp simp: setsum.cartesian_product reindex)
       
    27     fix n
       
    28     let ?M = "\<lambda>f. Suc (Max (f ` prod_decode ` {..<n}))"
       
    29     { fix a b x assume "x < n" and [symmetric]: "(a, b) = prod_decode x"
       
    30       then have "a < ?M fst" "b < ?M snd"
       
    31         by (auto intro!: Max_ge le_imp_less_Suc image_eqI) }
       
    32     then have "setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<?M fst} \<times> {..<?M snd})"
       
    33       by (auto intro!: setsum_mono3)
       
    34     then show "\<exists>a b. setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<a} \<times> {..<b})" by auto
       
    35   next
       
    36     fix a b
       
    37     let ?M = "prod_decode ` {..<Suc (Max (prod_encode ` ({..<a} \<times> {..<b})))}"
       
    38     { fix a' b' assume "a' < a" "b' < b" then have "(a', b') \<in> ?M"
       
    39         by (auto intro!: Max_ge le_imp_less_Suc image_eqI[where x="prod_encode (a', b')"]) }
       
    40     then have "setsum f ({..<a} \<times> {..<b}) \<le> setsum f ?M"
       
    41       by (auto intro!: setsum_mono3)
       
    42     then show "\<exists>n. setsum f ({..<a} \<times> {..<b}) \<le> setsum f (prod_decode ` {..<n})"
       
    43       by auto
       
    44   qed
       
    45   also have "\<dots> = (SUP p. \<Sum>i<p. \<Sum>n. f (i, n))"
       
    46     unfolding suminf_setsum[OF summableI, symmetric]
       
    47     by (simp add: suminf_eq_SUP SUP_pair setsum.commute[of _ "{..< fst _}"])
       
    48   finally show ?thesis unfolding g_def
       
    49     by (simp add: suminf_eq_SUP)
       
    50 qed
       
    51 
       
    52 subsection \<open>Characterizations of Measures\<close>
       
    53 
       
    54 definition outer_measure_space where
       
    55   "outer_measure_space M f \<longleftrightarrow> positive M f \<and> increasing M f \<and> countably_subadditive M f"
       
    56 
       
    57 subsubsection \<open>Lambda Systems\<close>
       
    58 
       
    59 definition lambda_system :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a set set"
       
    60 where
       
    61   "lambda_system \<Omega> M f = {l \<in> M. \<forall>x \<in> M. f (l \<inter> x) + f ((\<Omega> - l) \<inter> x) = f x}"
       
    62 
       
    63 lemma (in algebra) lambda_system_eq:
       
    64   "lambda_system \<Omega> M f = {l \<in> M. \<forall>x \<in> M. f (x \<inter> l) + f (x - l) = f x}"
       
    65 proof -
       
    66   have [simp]: "\<And>l x. l \<in> M \<Longrightarrow> x \<in> M \<Longrightarrow> (\<Omega> - l) \<inter> x = x - l"
       
    67     by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
       
    68   show ?thesis
       
    69     by (auto simp add: lambda_system_def) (metis Int_commute)+
       
    70 qed
       
    71 
       
    72 lemma (in algebra) lambda_system_empty: "positive M f \<Longrightarrow> {} \<in> lambda_system \<Omega> M f"
       
    73   by (auto simp add: positive_def lambda_system_eq)
       
    74 
       
    75 lemma lambda_system_sets: "x \<in> lambda_system \<Omega> M f \<Longrightarrow> x \<in> M"
       
    76   by (simp add: lambda_system_def)
       
    77 
       
    78 lemma (in algebra) lambda_system_Compl:
       
    79   fixes f:: "'a set \<Rightarrow> ennreal"
       
    80   assumes x: "x \<in> lambda_system \<Omega> M f"
       
    81   shows "\<Omega> - x \<in> lambda_system \<Omega> M f"
       
    82 proof -
       
    83   have "x \<subseteq> \<Omega>"
       
    84     by (metis sets_into_space lambda_system_sets x)
       
    85   hence "\<Omega> - (\<Omega> - x) = x"
       
    86     by (metis double_diff equalityE)
       
    87   with x show ?thesis
       
    88     by (force simp add: lambda_system_def ac_simps)
       
    89 qed
       
    90 
       
    91 lemma (in algebra) lambda_system_Int:
       
    92   fixes f:: "'a set \<Rightarrow> ennreal"
       
    93   assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
       
    94   shows "x \<inter> y \<in> lambda_system \<Omega> M f"
       
    95 proof -
       
    96   from xl yl show ?thesis
       
    97   proof (auto simp add: positive_def lambda_system_eq Int)
       
    98     fix u
       
    99     assume x: "x \<in> M" and y: "y \<in> M" and u: "u \<in> M"
       
   100        and fx: "\<forall>z\<in>M. f (z \<inter> x) + f (z - x) = f z"
       
   101        and fy: "\<forall>z\<in>M. f (z \<inter> y) + f (z - y) = f z"
       
   102     have "u - x \<inter> y \<in> M"
       
   103       by (metis Diff Diff_Int Un u x y)
       
   104     moreover
       
   105     have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
       
   106     moreover
       
   107     have "u - x \<inter> y - y = u - y" by blast
       
   108     ultimately
       
   109     have ey: "f (u - x \<inter> y) = f (u \<inter> y - x) + f (u - y)" using fy
       
   110       by force
       
   111     have "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y)
       
   112           = (f (u \<inter> (x \<inter> y)) + f (u \<inter> y - x)) + f (u - y)"
       
   113       by (simp add: ey ac_simps)
       
   114     also have "... =  (f ((u \<inter> y) \<inter> x) + f (u \<inter> y - x)) + f (u - y)"
       
   115       by (simp add: Int_ac)
       
   116     also have "... = f (u \<inter> y) + f (u - y)"
       
   117       using fx [THEN bspec, of "u \<inter> y"] Int y u
       
   118       by force
       
   119     also have "... = f u"
       
   120       by (metis fy u)
       
   121     finally show "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y) = f u" .
       
   122   qed
       
   123 qed
       
   124 
       
   125 lemma (in algebra) lambda_system_Un:
       
   126   fixes f:: "'a set \<Rightarrow> ennreal"
       
   127   assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
       
   128   shows "x \<union> y \<in> lambda_system \<Omega> M f"
       
   129 proof -
       
   130   have "(\<Omega> - x) \<inter> (\<Omega> - y) \<in> M"
       
   131     by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
       
   132   moreover
       
   133   have "x \<union> y = \<Omega> - ((\<Omega> - x) \<inter> (\<Omega> - y))"
       
   134     by auto (metis subsetD lambda_system_sets sets_into_space xl yl)+
       
   135   ultimately show ?thesis
       
   136     by (metis lambda_system_Compl lambda_system_Int xl yl)
       
   137 qed
       
   138 
       
   139 lemma (in algebra) lambda_system_algebra:
       
   140   "positive M f \<Longrightarrow> algebra \<Omega> (lambda_system \<Omega> M f)"
       
   141   apply (auto simp add: algebra_iff_Un)
       
   142   apply (metis lambda_system_sets set_mp sets_into_space)
       
   143   apply (metis lambda_system_empty)
       
   144   apply (metis lambda_system_Compl)
       
   145   apply (metis lambda_system_Un)
       
   146   done
       
   147 
       
   148 lemma (in algebra) lambda_system_strong_additive:
       
   149   assumes z: "z \<in> M" and disj: "x \<inter> y = {}"
       
   150       and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
       
   151   shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
       
   152 proof -
       
   153   have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
       
   154   moreover
       
   155   have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
       
   156   moreover
       
   157   have "(z \<inter> (x \<union> y)) \<in> M"
       
   158     by (metis Int Un lambda_system_sets xl yl z)
       
   159   ultimately show ?thesis using xl yl
       
   160     by (simp add: lambda_system_eq)
       
   161 qed
       
   162 
       
   163 lemma (in algebra) lambda_system_additive: "additive (lambda_system \<Omega> M f) f"
       
   164 proof (auto simp add: additive_def)
       
   165   fix x and y
       
   166   assume disj: "x \<inter> y = {}"
       
   167      and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
       
   168   hence  "x \<in> M" "y \<in> M" by (blast intro: lambda_system_sets)+
       
   169   thus "f (x \<union> y) = f x + f y"
       
   170     using lambda_system_strong_additive [OF top disj xl yl]
       
   171     by (simp add: Un)
       
   172 qed
       
   173 
       
   174 lemma lambda_system_increasing: "increasing M f \<Longrightarrow> increasing (lambda_system \<Omega> M f) f"
       
   175   by (simp add: increasing_def lambda_system_def)
       
   176 
       
   177 lemma lambda_system_positive: "positive M f \<Longrightarrow> positive (lambda_system \<Omega> M f) f"
       
   178   by (simp add: positive_def lambda_system_def)
       
   179 
       
   180 lemma (in algebra) lambda_system_strong_sum:
       
   181   fixes A:: "nat \<Rightarrow> 'a set" and f :: "'a set \<Rightarrow> ennreal"
       
   182   assumes f: "positive M f" and a: "a \<in> M"
       
   183       and A: "range A \<subseteq> lambda_system \<Omega> M f"
       
   184       and disj: "disjoint_family A"
       
   185   shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
       
   186 proof (induct n)
       
   187   case 0 show ?case using f by (simp add: positive_def)
       
   188 next
       
   189   case (Suc n)
       
   190   have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
       
   191     by (force simp add: disjoint_family_on_def neq_iff)
       
   192   have 3: "A n \<in> lambda_system \<Omega> M f" using A
       
   193     by blast
       
   194   interpret l: algebra \<Omega> "lambda_system \<Omega> M f"
       
   195     using f by (rule lambda_system_algebra)
       
   196   have 4: "UNION {0..<n} A \<in> lambda_system \<Omega> M f"
       
   197     using A l.UNION_in_sets by simp
       
   198   from Suc.hyps show ?case
       
   199     by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
       
   200 qed
       
   201 
       
   202 lemma (in sigma_algebra) lambda_system_caratheodory:
       
   203   assumes oms: "outer_measure_space M f"
       
   204       and A: "range A \<subseteq> lambda_system \<Omega> M f"
       
   205       and disj: "disjoint_family A"
       
   206   shows  "(\<Union>i. A i) \<in> lambda_system \<Omega> M f \<and> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
       
   207 proof -
       
   208   have pos: "positive M f" and inc: "increasing M f"
       
   209    and csa: "countably_subadditive M f"
       
   210     by (metis oms outer_measure_space_def)+
       
   211   have sa: "subadditive M f"
       
   212     by (metis countably_subadditive_subadditive csa pos)
       
   213   have A': "\<And>S. A`S \<subseteq> (lambda_system \<Omega> M f)" using A
       
   214     by auto
       
   215   interpret ls: algebra \<Omega> "lambda_system \<Omega> M f"
       
   216     using pos by (rule lambda_system_algebra)
       
   217   have A'': "range A \<subseteq> M"
       
   218      by (metis A image_subset_iff lambda_system_sets)
       
   219 
       
   220   have U_in: "(\<Union>i. A i) \<in> M"
       
   221     by (metis A'' countable_UN)
       
   222   have U_eq: "f (\<Union>i. A i) = (\<Sum>i. f (A i))"
       
   223   proof (rule antisym)
       
   224     show "f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))"
       
   225       using csa[unfolded countably_subadditive_def] A'' disj U_in by auto
       
   226     have dis: "\<And>N. disjoint_family_on A {..<N}" by (intro disjoint_family_on_mono[OF _ disj]) auto
       
   227     show "(\<Sum>i. f (A i)) \<le> f (\<Union>i. A i)"
       
   228       using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive _ A' dis] A''
       
   229       by (intro suminf_le_const[OF summableI]) (auto intro!: increasingD[OF inc] countable_UN)
       
   230   qed
       
   231   have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
       
   232     if a [iff]: "a \<in> M" for a
       
   233   proof (rule antisym)
       
   234     have "range (\<lambda>i. a \<inter> A i) \<subseteq> M" using A''
       
   235       by blast
       
   236     moreover
       
   237     have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
       
   238       by (auto simp add: disjoint_family_on_def)
       
   239     moreover
       
   240     have "a \<inter> (\<Union>i. A i) \<in> M"
       
   241       by (metis Int U_in a)
       
   242     ultimately
       
   243     have "f (a \<inter> (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i))"
       
   244       using csa[unfolded countably_subadditive_def, rule_format, of "(\<lambda>i. a \<inter> A i)"]
       
   245       by (simp add: o_def)
       
   246     hence "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i))"
       
   247       by (rule add_right_mono)
       
   248     also have "\<dots> \<le> f a"
       
   249     proof (intro ennreal_suminf_bound_add)
       
   250       fix n
       
   251       have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> M"
       
   252         by (metis A'' UNION_in_sets)
       
   253       have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
       
   254         by (blast intro: increasingD [OF inc] A'' UNION_in_sets)
       
   255       have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system \<Omega> M f"
       
   256         using ls.UNION_in_sets by (simp add: A)
       
   257       hence eq_fa: "f a = f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i))"
       
   258         by (simp add: lambda_system_eq UNION_in)
       
   259       have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
       
   260         by (blast intro: increasingD [OF inc] UNION_in U_in)
       
   261       thus "(\<Sum>i<n. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
       
   262         by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric])
       
   263     qed
       
   264     finally show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a"
       
   265       by simp
       
   266   next
       
   267     have "f a \<le> f (a \<inter> (\<Union>i. A i) \<union> (a - (\<Union>i. A i)))"
       
   268       by (blast intro:  increasingD [OF inc] U_in)
       
   269     also have "... \<le>  f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))"
       
   270       by (blast intro: subadditiveD [OF sa] U_in)
       
   271     finally show "f a \<le> f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))" .
       
   272   qed
       
   273   thus  ?thesis
       
   274     by (simp add: lambda_system_eq sums_iff U_eq U_in)
       
   275 qed
       
   276 
       
   277 lemma (in sigma_algebra) caratheodory_lemma:
       
   278   assumes oms: "outer_measure_space M f"
       
   279   defines "L \<equiv> lambda_system \<Omega> M f"
       
   280   shows "measure_space \<Omega> L f"
       
   281 proof -
       
   282   have pos: "positive M f"
       
   283     by (metis oms outer_measure_space_def)
       
   284   have alg: "algebra \<Omega> L"
       
   285     using lambda_system_algebra [of f, OF pos]
       
   286     by (simp add: algebra_iff_Un L_def)
       
   287   then
       
   288   have "sigma_algebra \<Omega> L"
       
   289     using lambda_system_caratheodory [OF oms]
       
   290     by (simp add: sigma_algebra_disjoint_iff L_def)
       
   291   moreover
       
   292   have "countably_additive L f" "positive L f"
       
   293     using pos lambda_system_caratheodory [OF oms]
       
   294     by (auto simp add: lambda_system_sets L_def countably_additive_def positive_def)
       
   295   ultimately
       
   296   show ?thesis
       
   297     using pos by (simp add: measure_space_def)
       
   298 qed
       
   299 
       
   300 definition outer_measure :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a set \<Rightarrow> ennreal" where
       
   301    "outer_measure M f X =
       
   302      (INF A:{A. range A \<subseteq> M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i)}. \<Sum>i. f (A i))"
       
   303 
       
   304 lemma (in ring_of_sets) outer_measure_agrees:
       
   305   assumes posf: "positive M f" and ca: "countably_additive M f" and s: "s \<in> M"
       
   306   shows "outer_measure M f s = f s"
       
   307   unfolding outer_measure_def
       
   308 proof (safe intro!: antisym INF_greatest)
       
   309   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" and dA: "disjoint_family A" and sA: "s \<subseteq> (\<Union>x. A x)"
       
   310   have inc: "increasing M f"
       
   311     by (metis additive_increasing ca countably_additive_additive posf)
       
   312   have "f s = f (\<Union>i. A i \<inter> s)"
       
   313     using sA by (auto simp: Int_absorb1)
       
   314   also have "\<dots> = (\<Sum>i. f (A i \<inter> s))"
       
   315     using sA dA A s
       
   316     by (intro ca[unfolded countably_additive_def, rule_format, symmetric])
       
   317        (auto simp: Int_absorb1 disjoint_family_on_def)
       
   318   also have "... \<le> (\<Sum>i. f (A i))"
       
   319     using A s by (auto intro!: suminf_le increasingD[OF inc])
       
   320   finally show "f s \<le> (\<Sum>i. f (A i))" .
       
   321 next
       
   322   have "(\<Sum>i. f (if i = 0 then s else {})) \<le> f s"
       
   323     using positiveD1[OF posf] by (subst suminf_finite[of "{0}"]) auto
       
   324   with s show "(INF A:{A. range A \<subseteq> M \<and> disjoint_family A \<and> s \<subseteq> UNION UNIV A}. \<Sum>i. f (A i)) \<le> f s"
       
   325     by (intro INF_lower2[of "\<lambda>i. if i = 0 then s else {}"])
       
   326        (auto simp: disjoint_family_on_def)
       
   327 qed
       
   328 
       
   329 lemma outer_measure_empty:
       
   330   "positive M f \<Longrightarrow> {} \<in> M \<Longrightarrow> outer_measure M f {} = 0"
       
   331   unfolding outer_measure_def
       
   332   by (intro antisym INF_lower2[of  "\<lambda>_. {}"]) (auto simp: disjoint_family_on_def positive_def)
       
   333 
       
   334 lemma (in ring_of_sets) positive_outer_measure:
       
   335   assumes "positive M f" shows "positive (Pow \<Omega>) (outer_measure M f)"
       
   336   unfolding positive_def by (auto simp: assms outer_measure_empty)
       
   337 
       
   338 lemma (in ring_of_sets) increasing_outer_measure: "increasing (Pow \<Omega>) (outer_measure M f)"
       
   339   by (force simp: increasing_def outer_measure_def intro!: INF_greatest intro: INF_lower)
       
   340 
       
   341 lemma (in ring_of_sets) outer_measure_le:
       
   342   assumes pos: "positive M f" and inc: "increasing M f" and A: "range A \<subseteq> M" and X: "X \<subseteq> (\<Union>i. A i)"
       
   343   shows "outer_measure M f X \<le> (\<Sum>i. f (A i))"
       
   344   unfolding outer_measure_def
       
   345 proof (safe intro!: INF_lower2[of "disjointed A"] del: subsetI)
       
   346   show dA: "range (disjointed A) \<subseteq> M"
       
   347     by (auto intro!: A range_disjointed_sets)
       
   348   have "\<forall>n. f (disjointed A n) \<le> f (A n)"
       
   349     by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A)
       
   350   then show "(\<Sum>i. f (disjointed A i)) \<le> (\<Sum>i. f (A i))"
       
   351     by (blast intro!: suminf_le)
       
   352 qed (auto simp: X UN_disjointed_eq disjoint_family_disjointed)
       
   353 
       
   354 lemma (in ring_of_sets) outer_measure_close:
       
   355   "outer_measure M f X < e \<Longrightarrow> \<exists>A. range A \<subseteq> M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) < e"
       
   356   unfolding outer_measure_def INF_less_iff by auto
       
   357 
       
   358 lemma (in ring_of_sets) countably_subadditive_outer_measure:
       
   359   assumes posf: "positive M f" and inc: "increasing M f"
       
   360   shows "countably_subadditive (Pow \<Omega>) (outer_measure M f)"
       
   361 proof (simp add: countably_subadditive_def, safe)
       
   362   fix A :: "nat \<Rightarrow> _" assume A: "range A \<subseteq> Pow (\<Omega>)" and sb: "(\<Union>i. A i) \<subseteq> \<Omega>"
       
   363   let ?O = "outer_measure M f"
       
   364   show "?O (\<Union>i. A i) \<le> (\<Sum>n. ?O (A n))"
       
   365   proof (rule ennreal_le_epsilon)
       
   366     fix b and e :: real assume "0 < e" "(\<Sum>n. outer_measure M f (A n)) < top"
       
   367     then have *: "\<And>n. outer_measure M f (A n) < outer_measure M f (A n) + e * (1/2)^Suc n"
       
   368       by (auto simp add: less_top dest!: ennreal_suminf_lessD)
       
   369     obtain B
       
   370       where B: "\<And>n. range (B n) \<subseteq> M"
       
   371       and sbB: "\<And>n. A n \<subseteq> (\<Union>i. B n i)"
       
   372       and Ble: "\<And>n. (\<Sum>i. f (B n i)) \<le> ?O (A n) + e * (1/2)^(Suc n)"
       
   373       by (metis less_imp_le outer_measure_close[OF *])
       
   374 
       
   375     define C where "C = case_prod B o prod_decode"
       
   376     from B have B_in_M: "\<And>i j. B i j \<in> M"
       
   377       by (rule range_subsetD)
       
   378     then have C: "range C \<subseteq> M"
       
   379       by (auto simp add: C_def split_def)
       
   380     have A_C: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
       
   381       using sbB by (auto simp add: C_def subset_eq) (metis prod.case prod_encode_inverse)
       
   382 
       
   383     have "?O (\<Union>i. A i) \<le> ?O (\<Union>i. C i)"
       
   384       using A_C A C by (intro increasing_outer_measure[THEN increasingD]) (auto dest!: sets_into_space)
       
   385     also have "\<dots> \<le> (\<Sum>i. f (C i))"
       
   386       using C by (intro outer_measure_le[OF posf inc]) auto
       
   387     also have "\<dots> = (\<Sum>n. \<Sum>i. f (B n i))"
       
   388       using B_in_M unfolding C_def comp_def by (intro suminf_ennreal_2dimen) auto
       
   389     also have "\<dots> \<le> (\<Sum>n. ?O (A n) + e * (1/2) ^ Suc n)"
       
   390       using B_in_M by (intro suminf_le suminf_nonneg allI Ble) auto
       
   391     also have "... = (\<Sum>n. ?O (A n)) + (\<Sum>n. ennreal e * ennreal ((1/2) ^ Suc n))"
       
   392       using \<open>0 < e\<close> by (subst suminf_add[symmetric])
       
   393                        (auto simp del: ennreal_suminf_cmult simp add: ennreal_mult[symmetric])
       
   394     also have "\<dots> = (\<Sum>n. ?O (A n)) + e"
       
   395       unfolding ennreal_suminf_cmult
       
   396       by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
       
   397     finally show "?O (\<Union>i. A i) \<le> (\<Sum>n. ?O (A n)) + e" .
       
   398   qed
       
   399 qed
       
   400 
       
   401 lemma (in ring_of_sets) outer_measure_space_outer_measure:
       
   402   "positive M f \<Longrightarrow> increasing M f \<Longrightarrow> outer_measure_space (Pow \<Omega>) (outer_measure M f)"
       
   403   by (simp add: outer_measure_space_def
       
   404     positive_outer_measure increasing_outer_measure countably_subadditive_outer_measure)
       
   405 
       
   406 lemma (in ring_of_sets) algebra_subset_lambda_system:
       
   407   assumes posf: "positive M f" and inc: "increasing M f"
       
   408       and add: "additive M f"
       
   409   shows "M \<subseteq> lambda_system \<Omega> (Pow \<Omega>) (outer_measure M f)"
       
   410 proof (auto dest: sets_into_space
       
   411             simp add: algebra.lambda_system_eq [OF algebra_Pow])
       
   412   fix x s assume x: "x \<in> M" and s: "s \<subseteq> \<Omega>"
       
   413   have [simp]: "\<And>x. x \<in> M \<Longrightarrow> s \<inter> (\<Omega> - x) = s - x" using s
       
   414     by blast
       
   415   have "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le> outer_measure M f s"
       
   416     unfolding outer_measure_def[of M f s]
       
   417   proof (safe intro!: INF_greatest)
       
   418     fix A :: "nat \<Rightarrow> 'a set" assume A: "disjoint_family A" "range A \<subseteq> M" "s \<subseteq> (\<Union>i. A i)"
       
   419     have "outer_measure M f (s \<inter> x) \<le> (\<Sum>i. f (A i \<inter> x))"
       
   420       unfolding outer_measure_def
       
   421     proof (safe intro!: INF_lower2[of "\<lambda>i. A i \<inter> x"])
       
   422       from A(1) show "disjoint_family (\<lambda>i. A i \<inter> x)"
       
   423         by (rule disjoint_family_on_bisimulation) auto
       
   424     qed (insert x A, auto)
       
   425     moreover
       
   426     have "outer_measure M f (s - x) \<le> (\<Sum>i. f (A i - x))"
       
   427       unfolding outer_measure_def
       
   428     proof (safe intro!: INF_lower2[of "\<lambda>i. A i - x"])
       
   429       from A(1) show "disjoint_family (\<lambda>i. A i - x)"
       
   430         by (rule disjoint_family_on_bisimulation) auto
       
   431     qed (insert x A, auto)
       
   432     ultimately have "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le>
       
   433         (\<Sum>i. f (A i \<inter> x)) + (\<Sum>i. f (A i - x))" by (rule add_mono)
       
   434     also have "\<dots> = (\<Sum>i. f (A i \<inter> x) + f (A i - x))"
       
   435       using A(2) x posf by (subst suminf_add) (auto simp: positive_def)
       
   436     also have "\<dots> = (\<Sum>i. f (A i))"
       
   437       using A x
       
   438       by (subst add[THEN additiveD, symmetric])
       
   439          (auto intro!: arg_cong[where f=suminf] arg_cong[where f=f])
       
   440     finally show "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le> (\<Sum>i. f (A i))" .
       
   441   qed
       
   442   moreover
       
   443   have "outer_measure M f s \<le> outer_measure M f (s \<inter> x) + outer_measure M f (s - x)"
       
   444   proof -
       
   445     have "outer_measure M f s = outer_measure M f ((s \<inter> x) \<union> (s - x))"
       
   446       by (metis Un_Diff_Int Un_commute)
       
   447     also have "... \<le> outer_measure M f (s \<inter> x) + outer_measure M f (s - x)"
       
   448       apply (rule subadditiveD)
       
   449       apply (rule ring_of_sets.countably_subadditive_subadditive [OF ring_of_sets_Pow])
       
   450       apply (simp add: positive_def outer_measure_empty[OF posf])
       
   451       apply (rule countably_subadditive_outer_measure)
       
   452       using s by (auto intro!: posf inc)
       
   453     finally show ?thesis .
       
   454   qed
       
   455   ultimately
       
   456   show "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) = outer_measure M f s"
       
   457     by (rule order_antisym)
       
   458 qed
       
   459 
       
   460 lemma measure_down: "measure_space \<Omega> N \<mu> \<Longrightarrow> sigma_algebra \<Omega> M \<Longrightarrow> M \<subseteq> N \<Longrightarrow> measure_space \<Omega> M \<mu>"
       
   461   by (auto simp add: measure_space_def positive_def countably_additive_def subset_eq)
       
   462 
       
   463 subsection \<open>Caratheodory's theorem\<close>
       
   464 
       
   465 theorem (in ring_of_sets) caratheodory':
       
   466   assumes posf: "positive M f" and ca: "countably_additive M f"
       
   467   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
       
   468 proof -
       
   469   have inc: "increasing M f"
       
   470     by (metis additive_increasing ca countably_additive_additive posf)
       
   471   let ?O = "outer_measure M f"
       
   472   define ls where "ls = lambda_system \<Omega> (Pow \<Omega>) ?O"
       
   473   have mls: "measure_space \<Omega> ls ?O"
       
   474     using sigma_algebra.caratheodory_lemma
       
   475             [OF sigma_algebra_Pow outer_measure_space_outer_measure [OF posf inc]]
       
   476     by (simp add: ls_def)
       
   477   hence sls: "sigma_algebra \<Omega> ls"
       
   478     by (simp add: measure_space_def)
       
   479   have "M \<subseteq> ls"
       
   480     by (simp add: ls_def)
       
   481        (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
       
   482   hence sgs_sb: "sigma_sets (\<Omega>) (M) \<subseteq> ls"
       
   483     using sigma_algebra.sigma_sets_subset [OF sls, of "M"]
       
   484     by simp
       
   485   have "measure_space \<Omega> (sigma_sets \<Omega> M) ?O"
       
   486     by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
       
   487        (simp_all add: sgs_sb space_closed)
       
   488   thus ?thesis using outer_measure_agrees [OF posf ca]
       
   489     by (intro exI[of _ ?O]) auto
       
   490 qed
       
   491 
       
   492 lemma (in ring_of_sets) caratheodory_empty_continuous:
       
   493   assumes f: "positive M f" "additive M f" and fin: "\<And>A. A \<in> M \<Longrightarrow> f A \<noteq> \<infinity>"
       
   494   assumes cont: "\<And>A. range A \<subseteq> M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) \<longlonglongrightarrow> 0"
       
   495   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
       
   496 proof (intro caratheodory' empty_continuous_imp_countably_additive f)
       
   497   show "\<forall>A\<in>M. f A \<noteq> \<infinity>" using fin by auto
       
   498 qed (rule cont)
       
   499 
       
   500 subsection \<open>Volumes\<close>
       
   501 
       
   502 definition volume :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
       
   503   "volume M f \<longleftrightarrow>
       
   504   (f {} = 0) \<and> (\<forall>a\<in>M. 0 \<le> f a) \<and>
       
   505   (\<forall>C\<subseteq>M. disjoint C \<longrightarrow> finite C \<longrightarrow> \<Union>C \<in> M \<longrightarrow> f (\<Union>C) = (\<Sum>c\<in>C. f c))"
       
   506 
       
   507 lemma volumeI:
       
   508   assumes "f {} = 0"
       
   509   assumes "\<And>a. a \<in> M \<Longrightarrow> 0 \<le> f a"
       
   510   assumes "\<And>C. C \<subseteq> M \<Longrightarrow> disjoint C \<Longrightarrow> finite C \<Longrightarrow> \<Union>C \<in> M \<Longrightarrow> f (\<Union>C) = (\<Sum>c\<in>C. f c)"
       
   511   shows "volume M f"
       
   512   using assms by (auto simp: volume_def)
       
   513 
       
   514 lemma volume_positive:
       
   515   "volume M f \<Longrightarrow> a \<in> M \<Longrightarrow> 0 \<le> f a"
       
   516   by (auto simp: volume_def)
       
   517 
       
   518 lemma volume_empty:
       
   519   "volume M f \<Longrightarrow> f {} = 0"
       
   520   by (auto simp: volume_def)
       
   521 
       
   522 lemma volume_finite_additive:
       
   523   assumes "volume M f"
       
   524   assumes A: "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M" "disjoint_family_on A I" "finite I" "UNION I A \<in> M"
       
   525   shows "f (UNION I A) = (\<Sum>i\<in>I. f (A i))"
       
   526 proof -
       
   527   have "A`I \<subseteq> M" "disjoint (A`I)" "finite (A`I)" "\<Union>(A`I) \<in> M"
       
   528     using A by (auto simp: disjoint_family_on_disjoint_image)
       
   529   with \<open>volume M f\<close> have "f (\<Union>(A`I)) = (\<Sum>a\<in>A`I. f a)"
       
   530     unfolding volume_def by blast
       
   531   also have "\<dots> = (\<Sum>i\<in>I. f (A i))"
       
   532   proof (subst setsum.reindex_nontrivial)
       
   533     fix i j assume "i \<in> I" "j \<in> I" "i \<noteq> j" "A i = A j"
       
   534     with \<open>disjoint_family_on A I\<close> have "A i = {}"
       
   535       by (auto simp: disjoint_family_on_def)
       
   536     then show "f (A i) = 0"
       
   537       using volume_empty[OF \<open>volume M f\<close>] by simp
       
   538   qed (auto intro: \<open>finite I\<close>)
       
   539   finally show "f (UNION I A) = (\<Sum>i\<in>I. f (A i))"
       
   540     by simp
       
   541 qed
       
   542 
       
   543 lemma (in ring_of_sets) volume_additiveI:
       
   544   assumes pos: "\<And>a. a \<in> M \<Longrightarrow> 0 \<le> \<mu> a"
       
   545   assumes [simp]: "\<mu> {} = 0"
       
   546   assumes add: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b = {} \<Longrightarrow> \<mu> (a \<union> b) = \<mu> a + \<mu> b"
       
   547   shows "volume M \<mu>"
       
   548 proof (unfold volume_def, safe)
       
   549   fix C assume "finite C" "C \<subseteq> M" "disjoint C"
       
   550   then show "\<mu> (\<Union>C) = setsum \<mu> C"
       
   551   proof (induct C)
       
   552     case (insert c C)
       
   553     from insert(1,2,4,5) have "\<mu> (\<Union>insert c C) = \<mu> c + \<mu> (\<Union>C)"
       
   554       by (auto intro!: add simp: disjoint_def)
       
   555     with insert show ?case
       
   556       by (simp add: disjoint_def)
       
   557   qed simp
       
   558 qed fact+
       
   559 
       
   560 lemma (in semiring_of_sets) extend_volume:
       
   561   assumes "volume M \<mu>"
       
   562   shows "\<exists>\<mu>'. volume generated_ring \<mu>' \<and> (\<forall>a\<in>M. \<mu>' a = \<mu> a)"
       
   563 proof -
       
   564   let ?R = generated_ring
       
   565   have "\<forall>a\<in>?R. \<exists>m. \<exists>C\<subseteq>M. a = \<Union>C \<and> finite C \<and> disjoint C \<and> m = (\<Sum>c\<in>C. \<mu> c)"
       
   566     by (auto simp: generated_ring_def)
       
   567   from bchoice[OF this] guess \<mu>' .. note \<mu>'_spec = this
       
   568 
       
   569   { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
       
   570     fix D assume D: "D \<subseteq> M" "finite D" "disjoint D"
       
   571     assume "\<Union>C = \<Union>D"
       
   572     have "(\<Sum>d\<in>D. \<mu> d) = (\<Sum>d\<in>D. \<Sum>c\<in>C. \<mu> (c \<inter> d))"
       
   573     proof (intro setsum.cong refl)
       
   574       fix d assume "d \<in> D"
       
   575       have Un_eq_d: "(\<Union>c\<in>C. c \<inter> d) = d"
       
   576         using \<open>d \<in> D\<close> \<open>\<Union>C = \<Union>D\<close> by auto
       
   577       moreover have "\<mu> (\<Union>c\<in>C. c \<inter> d) = (\<Sum>c\<in>C. \<mu> (c \<inter> d))"
       
   578       proof (rule volume_finite_additive)
       
   579         { fix c assume "c \<in> C" then show "c \<inter> d \<in> M"
       
   580             using C D \<open>d \<in> D\<close> by auto }
       
   581         show "(\<Union>a\<in>C. a \<inter> d) \<in> M"
       
   582           unfolding Un_eq_d using \<open>d \<in> D\<close> D by auto
       
   583         show "disjoint_family_on (\<lambda>a. a \<inter> d) C"
       
   584           using \<open>disjoint C\<close> by (auto simp: disjoint_family_on_def disjoint_def)
       
   585       qed fact+
       
   586       ultimately show "\<mu> d = (\<Sum>c\<in>C. \<mu> (c \<inter> d))" by simp
       
   587     qed }
       
   588   note split_sum = this
       
   589 
       
   590   { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
       
   591     fix D assume D: "D \<subseteq> M" "finite D" "disjoint D"
       
   592     assume "\<Union>C = \<Union>D"
       
   593     with split_sum[OF C D] split_sum[OF D C]
       
   594     have "(\<Sum>d\<in>D. \<mu> d) = (\<Sum>c\<in>C. \<mu> c)"
       
   595       by (simp, subst setsum.commute, simp add: ac_simps) }
       
   596   note sum_eq = this
       
   597 
       
   598   { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
       
   599     then have "\<Union>C \<in> ?R" by (auto simp: generated_ring_def)
       
   600     with \<mu>'_spec[THEN bspec, of "\<Union>C"]
       
   601     obtain D where
       
   602       D: "D \<subseteq> M" "finite D" "disjoint D" "\<Union>C = \<Union>D" and "\<mu>' (\<Union>C) = (\<Sum>d\<in>D. \<mu> d)"
       
   603       by auto
       
   604     with sum_eq[OF C D] have "\<mu>' (\<Union>C) = (\<Sum>c\<in>C. \<mu> c)" by simp }
       
   605   note \<mu>' = this
       
   606 
       
   607   show ?thesis
       
   608   proof (intro exI conjI ring_of_sets.volume_additiveI[OF generating_ring] ballI)
       
   609     fix a assume "a \<in> M" with \<mu>'[of "{a}"] show "\<mu>' a = \<mu> a"
       
   610       by (simp add: disjoint_def)
       
   611   next
       
   612     fix a assume "a \<in> ?R" then guess Ca .. note Ca = this
       
   613     with \<mu>'[of Ca] \<open>volume M \<mu>\<close>[THEN volume_positive]
       
   614     show "0 \<le> \<mu>' a"
       
   615       by (auto intro!: setsum_nonneg)
       
   616   next
       
   617     show "\<mu>' {} = 0" using \<mu>'[of "{}"] by auto
       
   618   next
       
   619     fix a assume "a \<in> ?R" then guess Ca .. note Ca = this
       
   620     fix b assume "b \<in> ?R" then guess Cb .. note Cb = this
       
   621     assume "a \<inter> b = {}"
       
   622     with Ca Cb have "Ca \<inter> Cb \<subseteq> {{}}" by auto
       
   623     then have C_Int_cases: "Ca \<inter> Cb = {{}} \<or> Ca \<inter> Cb = {}" by auto
       
   624 
       
   625     from \<open>a \<inter> b = {}\<close> have "\<mu>' (\<Union>(Ca \<union> Cb)) = (\<Sum>c\<in>Ca \<union> Cb. \<mu> c)"
       
   626       using Ca Cb by (intro \<mu>') (auto intro!: disjoint_union)
       
   627     also have "\<dots> = (\<Sum>c\<in>Ca \<union> Cb. \<mu> c) + (\<Sum>c\<in>Ca \<inter> Cb. \<mu> c)"
       
   628       using C_Int_cases volume_empty[OF \<open>volume M \<mu>\<close>] by (elim disjE) simp_all
       
   629     also have "\<dots> = (\<Sum>c\<in>Ca. \<mu> c) + (\<Sum>c\<in>Cb. \<mu> c)"
       
   630       using Ca Cb by (simp add: setsum.union_inter)
       
   631     also have "\<dots> = \<mu>' a + \<mu>' b"
       
   632       using Ca Cb by (simp add: \<mu>')
       
   633     finally show "\<mu>' (a \<union> b) = \<mu>' a + \<mu>' b"
       
   634       using Ca Cb by simp
       
   635   qed
       
   636 qed
       
   637 
       
   638 subsubsection \<open>Caratheodory on semirings\<close>
       
   639 
       
   640 theorem (in semiring_of_sets) caratheodory:
       
   641   assumes pos: "positive M \<mu>" and ca: "countably_additive M \<mu>"
       
   642   shows "\<exists>\<mu>' :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu>' s = \<mu> s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>'"
       
   643 proof -
       
   644   have "volume M \<mu>"
       
   645   proof (rule volumeI)
       
   646     { fix a assume "a \<in> M" then show "0 \<le> \<mu> a"
       
   647         using pos unfolding positive_def by auto }
       
   648     note p = this
       
   649 
       
   650     fix C assume sets_C: "C \<subseteq> M" "\<Union>C \<in> M" and "disjoint C" "finite C"
       
   651     have "\<exists>F'. bij_betw F' {..<card C} C"
       
   652       by (rule finite_same_card_bij[OF _ \<open>finite C\<close>]) auto
       
   653     then guess F' .. note F' = this
       
   654     then have F': "C = F' ` {..< card C}" "inj_on F' {..< card C}"
       
   655       by (auto simp: bij_betw_def)
       
   656     { fix i j assume *: "i < card C" "j < card C" "i \<noteq> j"
       
   657       with F' have "F' i \<in> C" "F' j \<in> C" "F' i \<noteq> F' j"
       
   658         unfolding inj_on_def by auto
       
   659       with \<open>disjoint C\<close>[THEN disjointD]
       
   660       have "F' i \<inter> F' j = {}"
       
   661         by auto }
       
   662     note F'_disj = this
       
   663     define F where "F i = (if i < card C then F' i else {})" for i
       
   664     then have "disjoint_family F"
       
   665       using F'_disj by (auto simp: disjoint_family_on_def)
       
   666     moreover from F' have "(\<Union>i. F i) = \<Union>C"
       
   667       by (auto simp add: F_def split: if_split_asm) blast
       
   668     moreover have sets_F: "\<And>i. F i \<in> M"
       
   669       using F' sets_C by (auto simp: F_def)
       
   670     moreover note sets_C
       
   671     ultimately have "\<mu> (\<Union>C) = (\<Sum>i. \<mu> (F i))"
       
   672       using ca[unfolded countably_additive_def, THEN spec, of F] by auto
       
   673     also have "\<dots> = (\<Sum>i<card C. \<mu> (F' i))"
       
   674     proof -
       
   675       have "(\<lambda>i. if i \<in> {..< card C} then \<mu> (F' i) else 0) sums (\<Sum>i<card C. \<mu> (F' i))"
       
   676         by (rule sums_If_finite_set) auto
       
   677       also have "(\<lambda>i. if i \<in> {..< card C} then \<mu> (F' i) else 0) = (\<lambda>i. \<mu> (F i))"
       
   678         using pos by (auto simp: positive_def F_def)
       
   679       finally show "(\<Sum>i. \<mu> (F i)) = (\<Sum>i<card C. \<mu> (F' i))"
       
   680         by (simp add: sums_iff)
       
   681     qed
       
   682     also have "\<dots> = (\<Sum>c\<in>C. \<mu> c)"
       
   683       using F'(2) by (subst (2) F') (simp add: setsum.reindex)
       
   684     finally show "\<mu> (\<Union>C) = (\<Sum>c\<in>C. \<mu> c)" .
       
   685   next
       
   686     show "\<mu> {} = 0"
       
   687       using \<open>positive M \<mu>\<close> by (rule positiveD1)
       
   688   qed
       
   689   from extend_volume[OF this] obtain \<mu>_r where
       
   690     V: "volume generated_ring \<mu>_r" "\<And>a. a \<in> M \<Longrightarrow> \<mu> a = \<mu>_r a"
       
   691     by auto
       
   692 
       
   693   interpret G: ring_of_sets \<Omega> generated_ring
       
   694     by (rule generating_ring)
       
   695 
       
   696   have pos: "positive generated_ring \<mu>_r"
       
   697     using V unfolding positive_def by (auto simp: positive_def intro!: volume_positive volume_empty)
       
   698 
       
   699   have "countably_additive generated_ring \<mu>_r"
       
   700   proof (rule countably_additiveI)
       
   701     fix A' :: "nat \<Rightarrow> 'a set" assume A': "range A' \<subseteq> generated_ring" "disjoint_family A'"
       
   702       and Un_A: "(\<Union>i. A' i) \<in> generated_ring"
       
   703 
       
   704     from generated_ringE[OF Un_A] guess C' . note C' = this
       
   705 
       
   706     { fix c assume "c \<in> C'"
       
   707       moreover define A where [abs_def]: "A i = A' i \<inter> c" for i
       
   708       ultimately have A: "range A \<subseteq> generated_ring" "disjoint_family A"
       
   709         and Un_A: "(\<Union>i. A i) \<in> generated_ring"
       
   710         using A' C'
       
   711         by (auto intro!: G.Int G.finite_Union intro: generated_ringI_Basic simp: disjoint_family_on_def)
       
   712       from A C' \<open>c \<in> C'\<close> have UN_eq: "(\<Union>i. A i) = c"
       
   713         by (auto simp: A_def)
       
   714 
       
   715       have "\<forall>i::nat. \<exists>f::nat \<Rightarrow> 'a set. \<mu>_r (A i) = (\<Sum>j. \<mu>_r (f j)) \<and> disjoint_family f \<and> \<Union>range f = A i \<and> (\<forall>j. f j \<in> M)"
       
   716         (is "\<forall>i. ?P i")
       
   717       proof
       
   718         fix i
       
   719         from A have Ai: "A i \<in> generated_ring" by auto
       
   720         from generated_ringE[OF this] guess C . note C = this
       
   721 
       
   722         have "\<exists>F'. bij_betw F' {..<card C} C"
       
   723           by (rule finite_same_card_bij[OF _ \<open>finite C\<close>]) auto
       
   724         then guess F .. note F = this
       
   725         define f where [abs_def]: "f i = (if i < card C then F i else {})" for i
       
   726         then have f: "bij_betw f {..< card C} C"
       
   727           by (intro bij_betw_cong[THEN iffD1, OF _ F]) auto
       
   728         with C have "\<forall>j. f j \<in> M"
       
   729           by (auto simp: Pi_iff f_def dest!: bij_betw_imp_funcset)
       
   730         moreover
       
   731         from f C have d_f: "disjoint_family_on f {..<card C}"
       
   732           by (intro disjoint_image_disjoint_family_on) (auto simp: bij_betw_def)
       
   733         then have "disjoint_family f"
       
   734           by (auto simp: disjoint_family_on_def f_def)
       
   735         moreover
       
   736         have Ai_eq: "A i = (\<Union>x<card C. f x)"
       
   737           using f C Ai unfolding bij_betw_def by auto
       
   738         then have "\<Union>range f = A i"
       
   739           using f C Ai unfolding bij_betw_def
       
   740             by (auto simp add: f_def cong del: strong_SUP_cong)
       
   741         moreover
       
   742         { have "(\<Sum>j. \<mu>_r (f j)) = (\<Sum>j. if j \<in> {..< card C} then \<mu>_r (f j) else 0)"
       
   743             using volume_empty[OF V(1)] by (auto intro!: arg_cong[where f=suminf] simp: f_def)
       
   744           also have "\<dots> = (\<Sum>j<card C. \<mu>_r (f j))"
       
   745             by (rule sums_If_finite_set[THEN sums_unique, symmetric]) simp
       
   746           also have "\<dots> = \<mu>_r (A i)"
       
   747             using C f[THEN bij_betw_imp_funcset] unfolding Ai_eq
       
   748             by (intro volume_finite_additive[OF V(1) _ d_f, symmetric])
       
   749                (auto simp: Pi_iff Ai_eq intro: generated_ringI_Basic)
       
   750           finally have "\<mu>_r (A i) = (\<Sum>j. \<mu>_r (f j))" .. }
       
   751         ultimately show "?P i"
       
   752           by blast
       
   753       qed
       
   754       from choice[OF this] guess f .. note f = this
       
   755       then have UN_f_eq: "(\<Union>i. case_prod f (prod_decode i)) = (\<Union>i. A i)"
       
   756         unfolding UN_extend_simps surj_prod_decode by (auto simp: set_eq_iff)
       
   757 
       
   758       have d: "disjoint_family (\<lambda>i. case_prod f (prod_decode i))"
       
   759         unfolding disjoint_family_on_def
       
   760       proof (intro ballI impI)
       
   761         fix m n :: nat assume "m \<noteq> n"
       
   762         then have neq: "prod_decode m \<noteq> prod_decode n"
       
   763           using inj_prod_decode[of UNIV] by (auto simp: inj_on_def)
       
   764         show "case_prod f (prod_decode m) \<inter> case_prod f (prod_decode n) = {}"
       
   765         proof cases
       
   766           assume "fst (prod_decode m) = fst (prod_decode n)"
       
   767           then show ?thesis
       
   768             using neq f by (fastforce simp: disjoint_family_on_def)
       
   769         next
       
   770           assume neq: "fst (prod_decode m) \<noteq> fst (prod_decode n)"
       
   771           have "case_prod f (prod_decode m) \<subseteq> A (fst (prod_decode m))"
       
   772             "case_prod f (prod_decode n) \<subseteq> A (fst (prod_decode n))"
       
   773             using f[THEN spec, of "fst (prod_decode m)"]
       
   774             using f[THEN spec, of "fst (prod_decode n)"]
       
   775             by (auto simp: set_eq_iff)
       
   776           with f A neq show ?thesis
       
   777             by (fastforce simp: disjoint_family_on_def subset_eq set_eq_iff)
       
   778         qed
       
   779       qed
       
   780       from f have "(\<Sum>n. \<mu>_r (A n)) = (\<Sum>n. \<mu>_r (case_prod f (prod_decode n)))"
       
   781         by (intro suminf_ennreal_2dimen[symmetric] generated_ringI_Basic)
       
   782          (auto split: prod.split)
       
   783       also have "\<dots> = (\<Sum>n. \<mu> (case_prod f (prod_decode n)))"
       
   784         using f V(2) by (auto intro!: arg_cong[where f=suminf] split: prod.split)
       
   785       also have "\<dots> = \<mu> (\<Union>i. case_prod f (prod_decode i))"
       
   786         using f \<open>c \<in> C'\<close> C'
       
   787         by (intro ca[unfolded countably_additive_def, rule_format])
       
   788            (auto split: prod.split simp: UN_f_eq d UN_eq)
       
   789       finally have "(\<Sum>n. \<mu>_r (A' n \<inter> c)) = \<mu> c"
       
   790         using UN_f_eq UN_eq by (simp add: A_def) }
       
   791     note eq = this
       
   792 
       
   793     have "(\<Sum>n. \<mu>_r (A' n)) = (\<Sum>n. \<Sum>c\<in>C'. \<mu>_r (A' n \<inter> c))"
       
   794       using C' A'
       
   795       by (subst volume_finite_additive[symmetric, OF V(1)])
       
   796          (auto simp: disjoint_def disjoint_family_on_def
       
   797                intro!: G.Int G.finite_Union arg_cong[where f="\<lambda>X. suminf (\<lambda>i. \<mu>_r (X i))"] ext
       
   798                intro: generated_ringI_Basic)
       
   799     also have "\<dots> = (\<Sum>c\<in>C'. \<Sum>n. \<mu>_r (A' n \<inter> c))"
       
   800       using C' A'
       
   801       by (intro suminf_setsum G.Int G.finite_Union) (auto intro: generated_ringI_Basic)
       
   802     also have "\<dots> = (\<Sum>c\<in>C'. \<mu>_r c)"
       
   803       using eq V C' by (auto intro!: setsum.cong)
       
   804     also have "\<dots> = \<mu>_r (\<Union>C')"
       
   805       using C' Un_A
       
   806       by (subst volume_finite_additive[symmetric, OF V(1)])
       
   807          (auto simp: disjoint_family_on_def disjoint_def
       
   808                intro: generated_ringI_Basic)
       
   809     finally show "(\<Sum>n. \<mu>_r (A' n)) = \<mu>_r (\<Union>i. A' i)"
       
   810       using C' by simp
       
   811   qed
       
   812   from G.caratheodory'[OF \<open>positive generated_ring \<mu>_r\<close> \<open>countably_additive generated_ring \<mu>_r\<close>]
       
   813   guess \<mu>' ..
       
   814   with V show ?thesis
       
   815     unfolding sigma_sets_generated_ring_eq
       
   816     by (intro exI[of _ \<mu>']) (auto intro: generated_ringI_Basic)
       
   817 qed
       
   818 
       
   819 lemma extend_measure_caratheodory:
       
   820   fixes G :: "'i \<Rightarrow> 'a set"
       
   821   assumes M: "M = extend_measure \<Omega> I G \<mu>"
       
   822   assumes "i \<in> I"
       
   823   assumes "semiring_of_sets \<Omega> (G ` I)"
       
   824   assumes empty: "\<And>i. i \<in> I \<Longrightarrow> G i = {} \<Longrightarrow> \<mu> i = 0"
       
   825   assumes inj: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> G i = G j \<Longrightarrow> \<mu> i = \<mu> j"
       
   826   assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> \<mu> i"
       
   827   assumes add: "\<And>A::nat \<Rightarrow> 'i. \<And>j. A \<in> UNIV \<rightarrow> I \<Longrightarrow> j \<in> I \<Longrightarrow> disjoint_family (G \<circ> A) \<Longrightarrow>
       
   828     (\<Union>i. G (A i)) = G j \<Longrightarrow> (\<Sum>n. \<mu> (A n)) = \<mu> j"
       
   829   shows "emeasure M (G i) = \<mu> i"
       
   830 proof -
       
   831   interpret semiring_of_sets \<Omega> "G ` I"
       
   832     by fact
       
   833   have "\<forall>g\<in>G`I. \<exists>i\<in>I. g = G i"
       
   834     by auto
       
   835   then obtain sel where sel: "\<And>g. g \<in> G ` I \<Longrightarrow> sel g \<in> I" "\<And>g. g \<in> G ` I \<Longrightarrow> G (sel g) = g"
       
   836     by metis
       
   837 
       
   838   have "\<exists>\<mu>'. (\<forall>s\<in>G ` I. \<mu>' s = \<mu> (sel s)) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G ` I)) \<mu>'"
       
   839   proof (rule caratheodory)
       
   840     show "positive (G ` I) (\<lambda>s. \<mu> (sel s))"
       
   841       by (auto simp: positive_def intro!: empty sel nonneg)
       
   842     show "countably_additive (G ` I) (\<lambda>s. \<mu> (sel s))"
       
   843     proof (rule countably_additiveI)
       
   844       fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> G ` I" "disjoint_family A" "(\<Union>i. A i) \<in> G ` I"
       
   845       then show "(\<Sum>i. \<mu> (sel (A i))) = \<mu> (sel (\<Union>i. A i))"
       
   846         by (intro add) (auto simp: sel image_subset_iff_funcset comp_def Pi_iff intro!: sel)
       
   847     qed
       
   848   qed
       
   849   then obtain \<mu>' where \<mu>': "\<forall>s\<in>G ` I. \<mu>' s = \<mu> (sel s)" "measure_space \<Omega> (sigma_sets \<Omega> (G ` I)) \<mu>'"
       
   850     by metis
       
   851 
       
   852   show ?thesis
       
   853   proof (rule emeasure_extend_measure[OF M])
       
   854     { fix i assume "i \<in> I" then show "\<mu>' (G i) = \<mu> i"
       
   855       using \<mu>' by (auto intro!: inj sel) }
       
   856     show "G ` I \<subseteq> Pow \<Omega>"
       
   857       by fact
       
   858     then show "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
       
   859       using \<mu>' by (simp_all add: M sets_extend_measure measure_space_def)
       
   860   qed fact
       
   861 qed
       
   862 
       
   863 lemma extend_measure_caratheodory_pair:
       
   864   fixes G :: "'i \<Rightarrow> 'j \<Rightarrow> 'a set"
       
   865   assumes M: "M = extend_measure \<Omega> {(a, b). P a b} (\<lambda>(a, b). G a b) (\<lambda>(a, b). \<mu> a b)"
       
   866   assumes "P i j"
       
   867   assumes semiring: "semiring_of_sets \<Omega> {G a b | a b. P a b}"
       
   868   assumes empty: "\<And>i j. P i j \<Longrightarrow> G i j = {} \<Longrightarrow> \<mu> i j = 0"
       
   869   assumes inj: "\<And>i j k l. P i j \<Longrightarrow> P k l \<Longrightarrow> G i j = G k l \<Longrightarrow> \<mu> i j = \<mu> k l"
       
   870   assumes nonneg: "\<And>i j. P i j \<Longrightarrow> 0 \<le> \<mu> i j"
       
   871   assumes add: "\<And>A::nat \<Rightarrow> 'i. \<And>B::nat \<Rightarrow> 'j. \<And>j k.
       
   872     (\<And>n. P (A n) (B n)) \<Longrightarrow> P j k \<Longrightarrow> disjoint_family (\<lambda>n. G (A n) (B n)) \<Longrightarrow>
       
   873     (\<Union>i. G (A i) (B i)) = G j k \<Longrightarrow> (\<Sum>n. \<mu> (A n) (B n)) = \<mu> j k"
       
   874   shows "emeasure M (G i j) = \<mu> i j"
       
   875 proof -
       
   876   have "emeasure M ((\<lambda>(a, b). G a b) (i, j)) = (\<lambda>(a, b). \<mu> a b) (i, j)"
       
   877   proof (rule extend_measure_caratheodory[OF M])
       
   878     show "semiring_of_sets \<Omega> ((\<lambda>(a, b). G a b) ` {(a, b). P a b})"
       
   879       using semiring by (simp add: image_def conj_commute)
       
   880   next
       
   881     fix A :: "nat \<Rightarrow> ('i \<times> 'j)" and j assume "A \<in> UNIV \<rightarrow> {(a, b). P a b}" "j \<in> {(a, b). P a b}"
       
   882       "disjoint_family ((\<lambda>(a, b). G a b) \<circ> A)"
       
   883       "(\<Union>i. case A i of (a, b) \<Rightarrow> G a b) = (case j of (a, b) \<Rightarrow> G a b)"
       
   884     then show "(\<Sum>n. case A n of (a, b) \<Rightarrow> \<mu> a b) = (case j of (a, b) \<Rightarrow> \<mu> a b)"
       
   885       using add[of "\<lambda>i. fst (A i)" "\<lambda>i. snd (A i)" "fst j" "snd j"]
       
   886       by (simp add: split_beta' comp_def Pi_iff)
       
   887   qed (auto split: prod.splits intro: assms)
       
   888   then show ?thesis by simp
       
   889 qed
       
   890 
       
   891 end