src/HOL/Real/HahnBanach/FunctionNorm.thy
changeset 29354 6ef5ddf22d3a
parent 29353 3d2e35c23c66
parent 29350 c7735554d291
child 29355 642cac18e155
child 29371 bab4e907d881
equal deleted inserted replaced
29353:3d2e35c23c66 29354:6ef5ddf22d3a
     1 (*  Title:      HOL/Real/HahnBanach/FunctionNorm.thy
       
     2     ID:         $Id$
       
     3     Author:     Gertrud Bauer, TU Munich
       
     4 *)
       
     5 
       
     6 header {* The norm of a function *}
       
     7 
       
     8 theory FunctionNorm
       
     9 imports NormedSpace FunctionOrder
       
    10 begin
       
    11 
       
    12 subsection {* Continuous linear forms*}
       
    13 
       
    14 text {*
       
    15   A linear form @{text f} on a normed vector space @{text "(V, \<parallel>\<cdot>\<parallel>)"}
       
    16   is \emph{continuous}, iff it is bounded, i.e.
       
    17   \begin{center}
       
    18   @{text "\<exists>c \<in> R. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
    19   \end{center}
       
    20   In our application no other functions than linear forms are
       
    21   considered, so we can define continuous linear forms as bounded
       
    22   linear forms:
       
    23 *}
       
    24 
       
    25 locale continuous = var V + norm_syntax + linearform +
       
    26   assumes bounded: "\<exists>c. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
       
    27 
       
    28 declare continuous.intro [intro?] continuous_axioms.intro [intro?]
       
    29 
       
    30 lemma continuousI [intro]:
       
    31   fixes norm :: "_ \<Rightarrow> real"  ("\<parallel>_\<parallel>")
       
    32   assumes "linearform V f"
       
    33   assumes r: "\<And>x. x \<in> V \<Longrightarrow> \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
       
    34   shows "continuous V norm f"
       
    35 proof
       
    36   show "linearform V f" by fact
       
    37   from r have "\<exists>c. \<forall>x\<in>V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" by blast
       
    38   then show "continuous_axioms V norm f" ..
       
    39 qed
       
    40 
       
    41 
       
    42 subsection {* The norm of a linear form *}
       
    43 
       
    44 text {*
       
    45   The least real number @{text c} for which holds
       
    46   \begin{center}
       
    47   @{text "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
    48   \end{center}
       
    49   is called the \emph{norm} of @{text f}.
       
    50 
       
    51   For non-trivial vector spaces @{text "V \<noteq> {0}"} the norm can be
       
    52   defined as
       
    53   \begin{center}
       
    54   @{text "\<parallel>f\<parallel> = \<sup>x \<noteq> 0. \<bar>f x\<bar> / \<parallel>x\<parallel>"}
       
    55   \end{center}
       
    56 
       
    57   For the case @{text "V = {0}"} the supremum would be taken from an
       
    58   empty set. Since @{text \<real>} is unbounded, there would be no supremum.
       
    59   To avoid this situation it must be guaranteed that there is an
       
    60   element in this set. This element must be @{text "{} \<ge> 0"} so that
       
    61   @{text fn_norm} has the norm properties. Furthermore it does not
       
    62   have to change the norm in all other cases, so it must be @{text 0},
       
    63   as all other elements are @{text "{} \<ge> 0"}.
       
    64 
       
    65   Thus we define the set @{text B} where the supremum is taken from as
       
    66   follows:
       
    67   \begin{center}
       
    68   @{text "{0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel>. x \<noteq> 0 \<and> x \<in> F}"}
       
    69   \end{center}
       
    70 
       
    71   @{text fn_norm} is equal to the supremum of @{text B}, if the
       
    72   supremum exists (otherwise it is undefined).
       
    73 *}
       
    74 
       
    75 locale fn_norm = norm_syntax +
       
    76   fixes B defines "B V f \<equiv> {0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel> | x. x \<noteq> 0 \<and> x \<in> V}"
       
    77   fixes fn_norm ("\<parallel>_\<parallel>\<hyphen>_" [0, 1000] 999)
       
    78   defines "\<parallel>f\<parallel>\<hyphen>V \<equiv> \<Squnion>(B V f)"
       
    79 
       
    80 locale normed_vectorspace_with_fn_norm = normed_vectorspace + fn_norm
       
    81 
       
    82 lemma (in fn_norm) B_not_empty [intro]: "0 \<in> B V f"
       
    83   by (simp add: B_def)
       
    84 
       
    85 text {*
       
    86   The following lemma states that every continuous linear form on a
       
    87   normed space @{text "(V, \<parallel>\<cdot>\<parallel>)"} has a function norm.
       
    88 *}
       
    89 
       
    90 lemma (in normed_vectorspace_with_fn_norm) fn_norm_works:
       
    91   assumes "continuous V norm f"
       
    92   shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
    93 proof -
       
    94   interpret continuous [V norm f] by fact
       
    95   txt {* The existence of the supremum is shown using the
       
    96     completeness of the reals. Completeness means, that every
       
    97     non-empty bounded set of reals has a supremum. *}
       
    98   have "\<exists>a. lub (B V f) a"
       
    99   proof (rule real_complete)
       
   100     txt {* First we have to show that @{text B} is non-empty: *}
       
   101     have "0 \<in> B V f" ..
       
   102     then show "\<exists>x. x \<in> B V f" ..
       
   103 
       
   104     txt {* Then we have to show that @{text B} is bounded: *}
       
   105     show "\<exists>c. \<forall>y \<in> B V f. y \<le> c"
       
   106     proof -
       
   107       txt {* We know that @{text f} is bounded by some value @{text c}. *}
       
   108       from bounded obtain c where c: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   109 
       
   110       txt {* To prove the thesis, we have to show that there is some
       
   111         @{text b}, such that @{text "y \<le> b"} for all @{text "y \<in>
       
   112         B"}. Due to the definition of @{text B} there are two cases. *}
       
   113 
       
   114       def b \<equiv> "max c 0"
       
   115       have "\<forall>y \<in> B V f. y \<le> b"
       
   116       proof
       
   117         fix y assume y: "y \<in> B V f"
       
   118         show "y \<le> b"
       
   119         proof cases
       
   120           assume "y = 0"
       
   121           then show ?thesis unfolding b_def by arith
       
   122         next
       
   123           txt {* The second case is @{text "y = \<bar>f x\<bar> / \<parallel>x\<parallel>"} for some
       
   124             @{text "x \<in> V"} with @{text "x \<noteq> 0"}. *}
       
   125           assume "y \<noteq> 0"
       
   126           with y obtain x where y_rep: "y = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
       
   127               and x: "x \<in> V" and neq: "x \<noteq> 0"
       
   128             by (auto simp add: B_def real_divide_def)
       
   129           from x neq have gt: "0 < \<parallel>x\<parallel>" ..
       
   130 
       
   131           txt {* The thesis follows by a short calculation using the
       
   132             fact that @{text f} is bounded. *}
       
   133 
       
   134           note y_rep
       
   135           also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
       
   136           proof (rule mult_right_mono)
       
   137             from c x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   138             from gt have "0 < inverse \<parallel>x\<parallel>" 
       
   139               by (rule positive_imp_inverse_positive)
       
   140             then show "0 \<le> inverse \<parallel>x\<parallel>" by (rule order_less_imp_le)
       
   141           qed
       
   142           also have "\<dots> = c * (\<parallel>x\<parallel> * inverse \<parallel>x\<parallel>)"
       
   143             by (rule real_mult_assoc)
       
   144           also
       
   145           from gt have "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   146           then have "\<parallel>x\<parallel> * inverse \<parallel>x\<parallel> = 1" by simp 
       
   147           also have "c * 1 \<le> b" by (simp add: b_def le_maxI1)
       
   148           finally show "y \<le> b" .
       
   149         qed
       
   150       qed
       
   151       then show ?thesis ..
       
   152     qed
       
   153   qed
       
   154   then show ?thesis unfolding fn_norm_def by (rule the_lubI_ex)
       
   155 qed
       
   156 
       
   157 lemma (in normed_vectorspace_with_fn_norm) fn_norm_ub [iff?]:
       
   158   assumes "continuous V norm f"
       
   159   assumes b: "b \<in> B V f"
       
   160   shows "b \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   161 proof -
       
   162   interpret continuous [V norm f] by fact
       
   163   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   164     using `continuous V norm f` by (rule fn_norm_works)
       
   165   from this and b show ?thesis ..
       
   166 qed
       
   167 
       
   168 lemma (in normed_vectorspace_with_fn_norm) fn_norm_leastB:
       
   169   assumes "continuous V norm f"
       
   170   assumes b: "\<And>b. b \<in> B V f \<Longrightarrow> b \<le> y"
       
   171   shows "\<parallel>f\<parallel>\<hyphen>V \<le> y"
       
   172 proof -
       
   173   interpret continuous [V norm f] by fact
       
   174   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   175     using `continuous V norm f` by (rule fn_norm_works)
       
   176   from this and b show ?thesis ..
       
   177 qed
       
   178 
       
   179 text {* The norm of a continuous function is always @{text "\<ge> 0"}. *}
       
   180 
       
   181 lemma (in normed_vectorspace_with_fn_norm) fn_norm_ge_zero [iff]:
       
   182   assumes "continuous V norm f"
       
   183   shows "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   184 proof -
       
   185   interpret continuous [V norm f] by fact
       
   186   txt {* The function norm is defined as the supremum of @{text B}.
       
   187     So it is @{text "\<ge> 0"} if all elements in @{text B} are @{text "\<ge>
       
   188     0"}, provided the supremum exists and @{text B} is not empty. *}
       
   189   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   190     using `continuous V norm f` by (rule fn_norm_works)
       
   191   moreover have "0 \<in> B V f" ..
       
   192   ultimately show ?thesis ..
       
   193 qed
       
   194 
       
   195 text {*
       
   196   \medskip The fundamental property of function norms is:
       
   197   \begin{center}
       
   198   @{text "\<bar>f x\<bar> \<le> \<parallel>f\<parallel> \<cdot> \<parallel>x\<parallel>"}
       
   199   \end{center}
       
   200 *}
       
   201 
       
   202 lemma (in normed_vectorspace_with_fn_norm) fn_norm_le_cong:
       
   203   assumes "continuous V norm f" "linearform V f"
       
   204   assumes x: "x \<in> V"
       
   205   shows "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
       
   206 proof -
       
   207   interpret continuous [V norm f] by fact
       
   208   interpret linearform [V f] .
       
   209   show ?thesis
       
   210   proof cases
       
   211     assume "x = 0"
       
   212     then have "\<bar>f x\<bar> = \<bar>f 0\<bar>" by simp
       
   213     also have "f 0 = 0" by rule unfold_locales
       
   214     also have "\<bar>\<dots>\<bar> = 0" by simp
       
   215     also have a: "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   216       using `continuous V norm f` by (rule fn_norm_ge_zero)
       
   217     from x have "0 \<le> norm x" ..
       
   218     with a have "0 \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" by (simp add: zero_le_mult_iff)
       
   219     finally show "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" .
       
   220   next
       
   221     assume "x \<noteq> 0"
       
   222     with x have neq: "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   223     then have "\<bar>f x\<bar> = (\<bar>f x\<bar> * inverse \<parallel>x\<parallel>) * \<parallel>x\<parallel>" by simp
       
   224     also have "\<dots> \<le>  \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
       
   225     proof (rule mult_right_mono)
       
   226       from x show "0 \<le> \<parallel>x\<parallel>" ..
       
   227       from x and neq have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<in> B V f"
       
   228 	by (auto simp add: B_def real_divide_def)
       
   229       with `continuous V norm f` show "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   230 	by (rule fn_norm_ub)
       
   231     qed
       
   232     finally show ?thesis .
       
   233   qed
       
   234 qed
       
   235 
       
   236 text {*
       
   237   \medskip The function norm is the least positive real number for
       
   238   which the following inequation holds:
       
   239   \begin{center}
       
   240     @{text "\<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
   241   \end{center}
       
   242 *}
       
   243 
       
   244 lemma (in normed_vectorspace_with_fn_norm) fn_norm_least [intro?]:
       
   245   assumes "continuous V norm f"
       
   246   assumes ineq: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" and ge: "0 \<le> c"
       
   247   shows "\<parallel>f\<parallel>\<hyphen>V \<le> c"
       
   248 proof -
       
   249   interpret continuous [V norm f] by fact
       
   250   show ?thesis
       
   251   proof (rule fn_norm_leastB [folded B_def fn_norm_def])
       
   252     fix b assume b: "b \<in> B V f"
       
   253     show "b \<le> c"
       
   254     proof cases
       
   255       assume "b = 0"
       
   256       with ge show ?thesis by simp
       
   257     next
       
   258       assume "b \<noteq> 0"
       
   259       with b obtain x where b_rep: "b = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
       
   260         and x_neq: "x \<noteq> 0" and x: "x \<in> V"
       
   261 	by (auto simp add: B_def real_divide_def)
       
   262       note b_rep
       
   263       also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
       
   264       proof (rule mult_right_mono)
       
   265 	have "0 < \<parallel>x\<parallel>" using x x_neq ..
       
   266 	then show "0 \<le> inverse \<parallel>x\<parallel>" by simp
       
   267 	from ineq and x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   268       qed
       
   269       also have "\<dots> = c"
       
   270       proof -
       
   271 	from x_neq and x have "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   272 	then show ?thesis by simp
       
   273       qed
       
   274       finally show ?thesis .
       
   275     qed
       
   276   qed (insert `continuous V norm f`, simp_all add: continuous_def)
       
   277 qed
       
   278 
       
   279 end