TFL/tfl.ML
changeset 10769 70b9b0cfe05f
child 11455 e07927b980ec
equal deleted inserted replaced
10768:a7282df327c6 10769:70b9b0cfe05f
       
     1 (*  Title:      TFL/tfl.ML
       
     2     ID:         $Id$
       
     3     Author:     Konrad Slind, Cambridge University Computer Laboratory
       
     4     Copyright   1997  University of Cambridge
       
     5 
       
     6 First part of main module.
       
     7 *)
       
     8 
       
     9 signature PRIM =
       
    10 sig
       
    11   val trace: bool ref
       
    12   type pattern
       
    13   val mk_functional: theory -> term list -> {functional: term, pats: pattern list}
       
    14   val wfrec_definition0: theory -> string -> term -> term -> theory * thm
       
    15   val post_definition: thm list -> theory * (thm * pattern list) ->
       
    16    {theory: theory,
       
    17     rules: thm,
       
    18     rows: int list,
       
    19     TCs: term list list,
       
    20     full_pats_TCs: (term * term list) list}
       
    21   val wfrec_eqns: theory -> xstring -> thm list -> term list ->
       
    22    {WFR: term,
       
    23     SV: term list,
       
    24     proto_def: term,
       
    25     extracta: (thm * term list) list,
       
    26     pats: pattern list}
       
    27   val lazyR_def: theory -> xstring -> thm list -> term list ->
       
    28    {theory: theory,
       
    29     rules: thm,
       
    30     R: term,
       
    31     SV: term list,
       
    32     full_pats_TCs: (term * term list) list,
       
    33     patterns : pattern list}
       
    34   val mk_induction: theory ->
       
    35     {fconst: term, R: term, SV: term list, pat_TCs_list: (term * term list) list} -> thm
       
    36   val postprocess: {wf_tac: tactic, terminator: tactic, simplifier: cterm -> thm} -> theory ->
       
    37     {rules: thm, induction: thm, TCs: term list list} ->
       
    38     {rules: thm, induction: thm, nested_tcs: thm list}
       
    39 end;
       
    40 
       
    41 structure Prim: PRIM =
       
    42 struct
       
    43 
       
    44 val trace = ref false;
       
    45 
       
    46 open BasisLibrary;
       
    47 
       
    48 structure R = Rules;
       
    49 structure S = USyntax;
       
    50 structure U = Utils;
       
    51 
       
    52 
       
    53 fun TFL_ERR func mesg = U.ERR {module = "Tfl", func = func, mesg = mesg};
       
    54 
       
    55 val concl = #2 o R.dest_thm;
       
    56 val hyp = #1 o R.dest_thm;
       
    57 
       
    58 val list_mk_type = U.end_itlist (curry (op -->));
       
    59 
       
    60 fun enumerate xs = ListPair.zip(xs, 0 upto (length xs - 1));
       
    61 
       
    62 fun front_last [] = raise TFL_ERR "front_last" "empty list"
       
    63   | front_last [x] = ([],x)
       
    64   | front_last (h::t) =
       
    65      let val (pref,x) = front_last t
       
    66      in
       
    67         (h::pref,x)
       
    68      end;
       
    69 
       
    70 
       
    71 (*---------------------------------------------------------------------------
       
    72  * The next function is common to pattern-match translation and
       
    73  * proof of completeness of cases for the induction theorem.
       
    74  *
       
    75  * The curried function "gvvariant" returns a function to generate distinct
       
    76  * variables that are guaranteed not to be in names.  The names of
       
    77  * the variables go u, v, ..., z, aa, ..., az, ...  The returned
       
    78  * function contains embedded refs!
       
    79  *---------------------------------------------------------------------------*)
       
    80 fun gvvariant names =
       
    81   let val slist = ref names
       
    82       val vname = ref "u"
       
    83       fun new() =
       
    84          if !vname mem_string (!slist)
       
    85          then (vname := bump_string (!vname);  new())
       
    86          else (slist := !vname :: !slist;  !vname)
       
    87   in
       
    88   fn ty => Free(new(), ty)
       
    89   end;
       
    90 
       
    91 
       
    92 (*---------------------------------------------------------------------------
       
    93  * Used in induction theorem production. This is the simple case of
       
    94  * partitioning up pattern rows by the leading constructor.
       
    95  *---------------------------------------------------------------------------*)
       
    96 fun ipartition gv (constructors,rows) =
       
    97   let fun pfail s = raise TFL_ERR "partition.part" s
       
    98       fun part {constrs = [],   rows = [],   A} = rev A
       
    99         | part {constrs = [],   rows = _::_, A} = pfail"extra cases in defn"
       
   100         | part {constrs = _::_, rows = [],   A} = pfail"cases missing in defn"
       
   101         | part {constrs = c::crst, rows,     A} =
       
   102           let val (Name,Ty) = dest_Const c
       
   103               val L = binder_types Ty
       
   104               val (in_group, not_in_group) =
       
   105                U.itlist (fn (row as (p::rst, rhs)) =>
       
   106                          fn (in_group,not_in_group) =>
       
   107                   let val (pc,args) = S.strip_comb p
       
   108                   in if (#1(dest_Const pc) = Name)
       
   109                      then ((args@rst, rhs)::in_group, not_in_group)
       
   110                      else (in_group, row::not_in_group)
       
   111                   end)      rows ([],[])
       
   112               val col_types = U.take type_of (length L, #1(hd in_group))
       
   113           in
       
   114           part{constrs = crst, rows = not_in_group,
       
   115                A = {constructor = c,
       
   116                     new_formals = map gv col_types,
       
   117                     group = in_group}::A}
       
   118           end
       
   119   in part{constrs = constructors, rows = rows, A = []}
       
   120   end;
       
   121 
       
   122 
       
   123 
       
   124 (*---------------------------------------------------------------------------
       
   125  * Each pattern carries with it a tag (i,b) where
       
   126  * i is the clause it came from and
       
   127  * b=true indicates that clause was given by the user
       
   128  * (or is an instantiation of a user supplied pattern)
       
   129  * b=false --> i = ~1
       
   130  *---------------------------------------------------------------------------*)
       
   131 
       
   132 type pattern = term * (int * bool)
       
   133 
       
   134 fun pattern_map f (tm,x) = (f tm, x);
       
   135 
       
   136 fun pattern_subst theta = pattern_map (subst_free theta);
       
   137 
       
   138 val pat_of = fst;
       
   139 fun row_of_pat x = fst (snd x);
       
   140 fun given x = snd (snd x);
       
   141 
       
   142 (*---------------------------------------------------------------------------
       
   143  * Produce an instance of a constructor, plus genvars for its arguments.
       
   144  *---------------------------------------------------------------------------*)
       
   145 fun fresh_constr ty_match colty gv c =
       
   146   let val (_,Ty) = dest_Const c
       
   147       val L = binder_types Ty
       
   148       and ty = body_type Ty
       
   149       val ty_theta = ty_match ty colty
       
   150       val c' = S.inst ty_theta c
       
   151       val gvars = map (S.inst ty_theta o gv) L
       
   152   in (c', gvars)
       
   153   end;
       
   154 
       
   155 
       
   156 (*---------------------------------------------------------------------------
       
   157  * Goes through a list of rows and picks out the ones beginning with a
       
   158  * pattern with constructor = Name.
       
   159  *---------------------------------------------------------------------------*)
       
   160 fun mk_group Name rows =
       
   161   U.itlist (fn (row as ((prfx, p::rst), rhs)) =>
       
   162             fn (in_group,not_in_group) =>
       
   163                let val (pc,args) = S.strip_comb p
       
   164                in if ((#1 (Term.dest_Const pc) = Name) handle TERM _ => false)
       
   165                   then (((prfx,args@rst), rhs)::in_group, not_in_group)
       
   166                   else (in_group, row::not_in_group) end)
       
   167       rows ([],[]);
       
   168 
       
   169 (*---------------------------------------------------------------------------
       
   170  * Partition the rows. Not efficient: we should use hashing.
       
   171  *---------------------------------------------------------------------------*)
       
   172 fun partition _ _ (_,_,_,[]) = raise TFL_ERR "partition" "no rows"
       
   173   | partition gv ty_match
       
   174               (constructors, colty, res_ty, rows as (((prfx,_),_)::_)) =
       
   175 let val fresh = fresh_constr ty_match colty gv
       
   176      fun part {constrs = [],      rows, A} = rev A
       
   177        | part {constrs = c::crst, rows, A} =
       
   178          let val (c',gvars) = fresh c
       
   179              val (Name,Ty) = dest_Const c'
       
   180              val (in_group, not_in_group) = mk_group Name rows
       
   181              val in_group' =
       
   182                  if (null in_group)  (* Constructor not given *)
       
   183                  then [((prfx, #2(fresh c)), (S.ARB res_ty, (~1,false)))]
       
   184                  else in_group
       
   185          in
       
   186          part{constrs = crst,
       
   187               rows = not_in_group,
       
   188               A = {constructor = c',
       
   189                    new_formals = gvars,
       
   190                    group = in_group'}::A}
       
   191          end
       
   192 in part{constrs=constructors, rows=rows, A=[]}
       
   193 end;
       
   194 
       
   195 (*---------------------------------------------------------------------------
       
   196  * Misc. routines used in mk_case
       
   197  *---------------------------------------------------------------------------*)
       
   198 
       
   199 fun mk_pat (c,l) =
       
   200   let val L = length (binder_types (type_of c))
       
   201       fun build (prfx,tag,plist) =
       
   202           let val args   = take (L,plist)
       
   203               and plist' = drop(L,plist)
       
   204           in (prfx,tag,list_comb(c,args)::plist') end
       
   205   in map build l end;
       
   206 
       
   207 fun v_to_prfx (prfx, v::pats) = (v::prfx,pats)
       
   208   | v_to_prfx _ = raise TFL_ERR "mk_case" "v_to_prfx";
       
   209 
       
   210 fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats)
       
   211   | v_to_pats _ = raise TFL_ERR "mk_case" "v_to_pats";
       
   212 
       
   213 
       
   214 (*----------------------------------------------------------------------------
       
   215  * Translation of pattern terms into nested case expressions.
       
   216  *
       
   217  * This performs the translation and also builds the full set of patterns.
       
   218  * Thus it supports the construction of induction theorems even when an
       
   219  * incomplete set of patterns is given.
       
   220  *---------------------------------------------------------------------------*)
       
   221 
       
   222 fun mk_case ty_info ty_match usednames range_ty =
       
   223  let
       
   224  fun mk_case_fail s = raise TFL_ERR "mk_case" s
       
   225  val fresh_var = gvvariant usednames
       
   226  val divide = partition fresh_var ty_match
       
   227  fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
       
   228    | expand constructors ty (row as ((prfx, p::rst), rhs)) =
       
   229        if (is_Free p)
       
   230        then let val fresh = fresh_constr ty_match ty fresh_var
       
   231                 fun expnd (c,gvs) =
       
   232                   let val capp = list_comb(c,gvs)
       
   233                   in ((prfx, capp::rst), pattern_subst[(p,capp)] rhs)
       
   234                   end
       
   235             in map expnd (map fresh constructors)  end
       
   236        else [row]
       
   237  fun mk{rows=[],...} = mk_case_fail"no rows"
       
   238    | mk{path=[], rows = ((prfx, []), (tm,tag))::_} =  (* Done *)
       
   239         ([(prfx,tag,[])], tm)
       
   240    | mk{path=[], rows = _::_} = mk_case_fail"blunder"
       
   241    | mk{path as u::rstp, rows as ((prfx, []), rhs)::rst} =
       
   242         mk{path = path,
       
   243            rows = ((prfx, [fresh_var(type_of u)]), rhs)::rst}
       
   244    | mk{path = u::rstp, rows as ((_, p::_), _)::_} =
       
   245      let val (pat_rectangle,rights) = ListPair.unzip rows
       
   246          val col0 = map(hd o #2) pat_rectangle
       
   247      in
       
   248      if (forall is_Free col0)
       
   249      then let val rights' = map (fn(v,e) => pattern_subst[(v,u)] e)
       
   250                                 (ListPair.zip (col0, rights))
       
   251               val pat_rectangle' = map v_to_prfx pat_rectangle
       
   252               val (pref_patl,tm) = mk{path = rstp,
       
   253                                       rows = ListPair.zip (pat_rectangle',
       
   254                                                            rights')}
       
   255           in (map v_to_pats pref_patl, tm)
       
   256           end
       
   257      else
       
   258      let val pty as Type (ty_name,_) = type_of p
       
   259      in
       
   260      case (ty_info ty_name)
       
   261      of None => mk_case_fail("Not a known datatype: "^ty_name)
       
   262       | Some{case_const,constructors} =>
       
   263         let
       
   264             val case_const_name = #1(dest_Const case_const)
       
   265             val nrows = List.concat (map (expand constructors pty) rows)
       
   266             val subproblems = divide(constructors, pty, range_ty, nrows)
       
   267             val groups      = map #group subproblems
       
   268             and new_formals = map #new_formals subproblems
       
   269             and constructors' = map #constructor subproblems
       
   270             val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
       
   271                            (ListPair.zip (new_formals, groups))
       
   272             val rec_calls = map mk news
       
   273             val (pat_rect,dtrees) = ListPair.unzip rec_calls
       
   274             val case_functions = map S.list_mk_abs
       
   275                                   (ListPair.zip (new_formals, dtrees))
       
   276             val types = map type_of (case_functions@[u]) @ [range_ty]
       
   277             val case_const' = Const(case_const_name, list_mk_type types)
       
   278             val tree = list_comb(case_const', case_functions@[u])
       
   279             val pat_rect1 = List.concat
       
   280                               (ListPair.map mk_pat (constructors', pat_rect))
       
   281         in (pat_rect1,tree)
       
   282         end
       
   283      end end
       
   284  in mk
       
   285  end;
       
   286 
       
   287 
       
   288 (* Repeated variable occurrences in a pattern are not allowed. *)
       
   289 fun FV_multiset tm =
       
   290    case (S.dest_term tm)
       
   291      of S.VAR{Name,Ty} => [Free(Name,Ty)]
       
   292       | S.CONST _ => []
       
   293       | S.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
       
   294       | S.LAMB _ => raise TFL_ERR "FV_multiset" "lambda";
       
   295 
       
   296 fun no_repeat_vars thy pat =
       
   297  let fun check [] = true
       
   298        | check (v::rst) =
       
   299          if mem_term (v,rst) then
       
   300             raise TFL_ERR "no_repeat_vars"
       
   301                           (quote (#1 (dest_Free v)) ^
       
   302                           " occurs repeatedly in the pattern " ^
       
   303                           quote (string_of_cterm (Thry.typecheck thy pat)))
       
   304          else check rst
       
   305  in check (FV_multiset pat)
       
   306  end;
       
   307 
       
   308 fun dest_atom (Free p) = p
       
   309   | dest_atom (Const p) = p
       
   310   | dest_atom  _ = raise TFL_ERR "dest_atom" "function name not an identifier";
       
   311 
       
   312 fun same_name (p,q) = #1(dest_atom p) = #1(dest_atom q);
       
   313 
       
   314 local fun mk_functional_err s = raise TFL_ERR "mk_functional" s
       
   315       fun single [_$_] =
       
   316               mk_functional_err "recdef does not allow currying"
       
   317         | single [f] = f
       
   318         | single fs  =
       
   319               (*multiple function names?*)
       
   320               if length (gen_distinct same_name fs) < length fs
       
   321               then mk_functional_err
       
   322                    "The function being declared appears with multiple types"
       
   323               else mk_functional_err
       
   324                    (Int.toString (length fs) ^
       
   325                     " distinct function names being declared")
       
   326 in
       
   327 fun mk_functional thy clauses =
       
   328  let val (L,R) = ListPair.unzip (map HOLogic.dest_eq clauses
       
   329                    handle TERM _ => raise TFL_ERR "mk_functional"
       
   330                         "recursion equations must use the = relation")
       
   331      val (funcs,pats) = ListPair.unzip (map (fn (t$u) =>(t,u)) L)
       
   332      val atom = single (gen_distinct (op aconv) funcs)
       
   333      val (fname,ftype) = dest_atom atom
       
   334      val dummy = map (no_repeat_vars thy) pats
       
   335      val rows = ListPair.zip (map (fn x => ([]:term list,[x])) pats,
       
   336                               map (fn (t,i) => (t,(i,true))) (enumerate R))
       
   337      val names = foldr add_term_names (R,[])
       
   338      val atype = type_of(hd pats)
       
   339      and aname = variant names "a"
       
   340      val a = Free(aname,atype)
       
   341      val ty_info = Thry.match_info thy
       
   342      val ty_match = Thry.match_type thy
       
   343      val range_ty = type_of (hd R)
       
   344      val (patts, case_tm) = mk_case ty_info ty_match (aname::names) range_ty
       
   345                                     {path=[a], rows=rows}
       
   346      val patts1 = map (fn (_,tag,[pat]) => (pat,tag)) patts
       
   347           handle Match => mk_functional_err "error in pattern-match translation"
       
   348      val patts2 = Library.sort (Library.int_ord o Library.pairself row_of_pat) patts1
       
   349      val finals = map row_of_pat patts2
       
   350      val originals = map (row_of_pat o #2) rows
       
   351      val dummy = case (originals\\finals)
       
   352              of [] => ()
       
   353           | L => mk_functional_err
       
   354  ("The following clauses are redundant (covered by preceding clauses): " ^
       
   355                    commas (map (fn i => Int.toString (i + 1)) L))
       
   356  in {functional = Abs(Sign.base_name fname, ftype,
       
   357                       abstract_over (atom,
       
   358                                      absfree(aname,atype, case_tm))),
       
   359      pats = patts2}
       
   360 end end;
       
   361 
       
   362 
       
   363 (*----------------------------------------------------------------------------
       
   364  *
       
   365  *                    PRINCIPLES OF DEFINITION
       
   366  *
       
   367  *---------------------------------------------------------------------------*)
       
   368 
       
   369 
       
   370 (*For Isabelle, the lhs of a definition must be a constant.*)
       
   371 fun mk_const_def sign (Name, Ty, rhs) =
       
   372     Sign.infer_types sign (K None) (K None) [] false
       
   373                ([Const("==",dummyT) $ Const(Name,Ty) $ rhs], propT)
       
   374     |> #1;
       
   375 
       
   376 (*Make all TVars available for instantiation by adding a ? to the front*)
       
   377 fun poly_tvars (Type(a,Ts)) = Type(a, map (poly_tvars) Ts)
       
   378   | poly_tvars (TFree (a,sort)) = TVar (("?" ^ a, 0), sort)
       
   379   | poly_tvars (TVar ((a,i),sort)) = TVar (("?" ^ a, i+1), sort);
       
   380 
       
   381 local val f_eq_wfrec_R_M =
       
   382            #ant(S.dest_imp(#2(S.strip_forall (concl Thms.WFREC_COROLLARY))))
       
   383       val {lhs=f, rhs} = S.dest_eq f_eq_wfrec_R_M
       
   384       val (fname,_) = dest_Free f
       
   385       val (wfrec,_) = S.strip_comb rhs
       
   386 in
       
   387 fun wfrec_definition0 thy fid R (functional as Abs(Name, Ty, _)) =
       
   388  let val def_name = if Name<>fid then
       
   389                         raise TFL_ERR "wfrec_definition0"
       
   390                                       ("Expected a definition of " ^
       
   391                                              quote fid ^ " but found one of " ^
       
   392                                       quote Name)
       
   393                     else Name ^ "_def"
       
   394      val wfrec_R_M =  map_term_types poly_tvars
       
   395                           (wfrec $ map_term_types poly_tvars R)
       
   396                       $ functional
       
   397      val def_term = mk_const_def (Theory.sign_of thy) (Name, Ty, wfrec_R_M)
       
   398      val (thy', [def]) = PureThy.add_defs_i false [Thm.no_attributes (def_name, def_term)] thy
       
   399  in (thy', def) end;
       
   400 end;
       
   401 
       
   402 
       
   403 
       
   404 (*---------------------------------------------------------------------------
       
   405  * This structure keeps track of congruence rules that aren't derived
       
   406  * from a datatype definition.
       
   407  *---------------------------------------------------------------------------*)
       
   408 fun extraction_thms thy =
       
   409  let val {case_rewrites,case_congs} = Thry.extract_info thy
       
   410  in (case_rewrites, case_congs)
       
   411  end;
       
   412 
       
   413 
       
   414 (*---------------------------------------------------------------------------
       
   415  * Pair patterns with termination conditions. The full list of patterns for
       
   416  * a definition is merged with the TCs arising from the user-given clauses.
       
   417  * There can be fewer clauses than the full list, if the user omitted some
       
   418  * cases. This routine is used to prepare input for mk_induction.
       
   419  *---------------------------------------------------------------------------*)
       
   420 fun merge full_pats TCs =
       
   421 let fun insert (p,TCs) =
       
   422       let fun insrt ((x as (h,[]))::rst) =
       
   423                  if (p aconv h) then (p,TCs)::rst else x::insrt rst
       
   424             | insrt (x::rst) = x::insrt rst
       
   425             | insrt[] = raise TFL_ERR "merge.insert" "pattern not found"
       
   426       in insrt end
       
   427     fun pass ([],ptcl_final) = ptcl_final
       
   428       | pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
       
   429 in
       
   430   pass (TCs, map (fn p => (p,[])) full_pats)
       
   431 end;
       
   432 
       
   433 
       
   434 fun givens pats = map pat_of (filter given pats);
       
   435 
       
   436 fun post_definition meta_tflCongs (theory, (def, pats)) =
       
   437  let val tych = Thry.typecheck theory
       
   438      val f = #lhs(S.dest_eq(concl def))
       
   439      val corollary = R.MATCH_MP Thms.WFREC_COROLLARY def
       
   440      val pats' = filter given pats
       
   441      val given_pats = map pat_of pats'
       
   442      val rows = map row_of_pat pats'
       
   443      val WFR = #ant(S.dest_imp(concl corollary))
       
   444      val R = #Rand(S.dest_comb WFR)
       
   445      val corollary' = R.UNDISCH corollary  (* put WF R on assums *)
       
   446      val corollaries = map (fn pat => R.SPEC (tych pat) corollary')
       
   447                            given_pats
       
   448      val (case_rewrites,context_congs) = extraction_thms theory
       
   449      val corollaries' = map(rewrite_rule case_rewrites) corollaries
       
   450      val extract = R.CONTEXT_REWRITE_RULE
       
   451                      (f, [R], cut_apply, meta_tflCongs@context_congs)
       
   452      val (rules, TCs) = ListPair.unzip (map extract corollaries')
       
   453      val rules0 = map (rewrite_rule [Thms.CUT_DEF]) rules
       
   454      val mk_cond_rule = R.FILTER_DISCH_ALL(not o curry (op aconv) WFR)
       
   455      val rules1 = R.LIST_CONJ(map mk_cond_rule rules0)
       
   456  in
       
   457  {theory = theory,
       
   458   rules = rules1,
       
   459   rows = rows,
       
   460   full_pats_TCs = merge (map pat_of pats) (ListPair.zip (given_pats, TCs)),
       
   461   TCs = TCs}
       
   462  end;
       
   463 
       
   464 
       
   465 (*---------------------------------------------------------------------------
       
   466  * Perform the extraction without making the definition. Definition and
       
   467  * extraction commute for the non-nested case.  (Deferred recdefs)
       
   468  *
       
   469  * The purpose of wfrec_eqns is merely to instantiate the recursion theorem
       
   470  * and extract termination conditions: no definition is made.
       
   471  *---------------------------------------------------------------------------*)
       
   472 
       
   473 fun wfrec_eqns thy fid tflCongs eqns =
       
   474  let val {lhs,rhs} = S.dest_eq (hd eqns)
       
   475      val (f,args) = S.strip_comb lhs
       
   476      val (fname,fty) = dest_atom f
       
   477      val (SV,a) = front_last args    (* SV = schematic variables *)
       
   478      val g = list_comb(f,SV)
       
   479      val h = Free(fname,type_of g)
       
   480      val eqns1 = map (subst_free[(g,h)]) eqns
       
   481      val {functional as Abs(Name, Ty, _),  pats} = mk_functional thy eqns1
       
   482      val given_pats = givens pats
       
   483      (* val f = Free(Name,Ty) *)
       
   484      val Type("fun", [f_dty, f_rty]) = Ty
       
   485      val dummy = if Name<>fid then
       
   486                         raise TFL_ERR "wfrec_eqns"
       
   487                                       ("Expected a definition of " ^
       
   488                                       quote fid ^ " but found one of " ^
       
   489                                       quote Name)
       
   490                  else ()
       
   491      val (case_rewrites,context_congs) = extraction_thms thy
       
   492      val tych = Thry.typecheck thy
       
   493      val WFREC_THM0 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
       
   494      val Const("All",_) $ Abs(Rname,Rtype,_) = concl WFREC_THM0
       
   495      val R = Free (variant (foldr add_term_names (eqns,[])) Rname,
       
   496                    Rtype)
       
   497      val WFREC_THM = R.ISPECL [tych R, tych g] WFREC_THM0
       
   498      val ([proto_def, WFR],_) = S.strip_imp(concl WFREC_THM)
       
   499      val dummy =
       
   500            if !trace then
       
   501                writeln ("ORIGINAL PROTO_DEF: " ^
       
   502                           Sign.string_of_term (Theory.sign_of thy) proto_def)
       
   503            else ()
       
   504      val R1 = S.rand WFR
       
   505      val corollary' = R.UNDISCH(R.UNDISCH WFREC_THM)
       
   506      val corollaries = map (fn pat => R.SPEC (tych pat) corollary') given_pats
       
   507      val corollaries' = map (rewrite_rule case_rewrites) corollaries
       
   508      fun extract X = R.CONTEXT_REWRITE_RULE
       
   509                        (f, R1::SV, cut_apply, tflCongs@context_congs) X
       
   510  in {proto_def = proto_def,
       
   511      SV=SV,
       
   512      WFR=WFR,
       
   513      pats=pats,
       
   514      extracta = map extract corollaries'}
       
   515  end;
       
   516 
       
   517 
       
   518 (*---------------------------------------------------------------------------
       
   519  * Define the constant after extracting the termination conditions. The
       
   520  * wellfounded relation used in the definition is computed by using the
       
   521  * choice operator on the extracted conditions (plus the condition that
       
   522  * such a relation must be wellfounded).
       
   523  *---------------------------------------------------------------------------*)
       
   524 
       
   525 fun lazyR_def thy fid tflCongs eqns =
       
   526  let val {proto_def,WFR,pats,extracta,SV} =
       
   527            wfrec_eqns thy fid tflCongs eqns
       
   528      val R1 = S.rand WFR
       
   529      val f = #lhs(S.dest_eq proto_def)
       
   530      val (extractants,TCl) = ListPair.unzip extracta
       
   531      val dummy = if !trace
       
   532                  then (writeln "Extractants = ";
       
   533                        prths extractants;
       
   534                        ())
       
   535                  else ()
       
   536      val TCs = foldr (gen_union (op aconv)) (TCl, [])
       
   537      val full_rqt = WFR::TCs
       
   538      val R' = S.mk_select{Bvar=R1, Body=S.list_mk_conj full_rqt}
       
   539      val R'abs = S.rand R'
       
   540      val proto_def' = subst_free[(R1,R')] proto_def
       
   541      val dummy = if !trace then writeln ("proto_def' = " ^
       
   542                                          Sign.string_of_term
       
   543                                          (Theory.sign_of thy) proto_def')
       
   544                            else ()
       
   545      val {lhs,rhs} = S.dest_eq proto_def'
       
   546      val (c,args) = S.strip_comb lhs
       
   547      val (Name,Ty) = dest_atom c
       
   548      val defn = mk_const_def (Theory.sign_of thy)
       
   549                  (Name, Ty, S.list_mk_abs (args,rhs))
       
   550      val (theory, [def0]) =
       
   551        thy
       
   552        |> PureThy.add_defs_i false
       
   553             [Thm.no_attributes (fid ^ "_def", defn)]
       
   554      val def = freezeT def0;
       
   555      val dummy = if !trace then writeln ("DEF = " ^ string_of_thm def)
       
   556                            else ()
       
   557      (* val fconst = #lhs(S.dest_eq(concl def))  *)
       
   558      val tych = Thry.typecheck theory
       
   559      val full_rqt_prop = map (Dcterm.mk_prop o tych) full_rqt
       
   560          (*lcp: a lot of object-logic inference to remove*)
       
   561      val baz = R.DISCH_ALL
       
   562                  (U.itlist R.DISCH full_rqt_prop
       
   563                   (R.LIST_CONJ extractants))
       
   564      val dum = if !trace then writeln ("baz = " ^ string_of_thm baz)
       
   565                            else ()
       
   566      val f_free = Free (fid, fastype_of f)  (*'cos f is a Const*)
       
   567      val SV' = map tych SV;
       
   568      val SVrefls = map reflexive SV'
       
   569      val def0 = (U.rev_itlist (fn x => fn th => R.rbeta(combination th x))
       
   570                    SVrefls def)
       
   571                 RS meta_eq_to_obj_eq
       
   572      val def' = R.MP (R.SPEC (tych R') (R.GEN (tych R1) baz)) def0
       
   573      val body_th = R.LIST_CONJ (map R.ASSUME full_rqt_prop)
       
   574      val bar = R.MP (R.ISPECL[tych R'abs, tych R1] Thms.SELECT_AX)
       
   575                     body_th
       
   576  in {theory = theory, R=R1, SV=SV,
       
   577      rules = U.rev_itlist (U.C R.MP) (R.CONJUNCTS bar) def',
       
   578      full_pats_TCs = merge (map pat_of pats) (ListPair.zip (givens pats, TCl)),
       
   579      patterns = pats}
       
   580  end;
       
   581 
       
   582 
       
   583 
       
   584 (*----------------------------------------------------------------------------
       
   585  *
       
   586  *                           INDUCTION THEOREM
       
   587  *
       
   588  *---------------------------------------------------------------------------*)
       
   589 
       
   590 
       
   591 (*------------------------  Miscellaneous function  --------------------------
       
   592  *
       
   593  *           [x_1,...,x_n]     ?v_1...v_n. M[v_1,...,v_n]
       
   594  *     -----------------------------------------------------------
       
   595  *     ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
       
   596  *                        ...
       
   597  *                        (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
       
   598  *
       
   599  * This function is totally ad hoc. Used in the production of the induction
       
   600  * theorem. The nchotomy theorem can have clauses that look like
       
   601  *
       
   602  *     ?v1..vn. z = C vn..v1
       
   603  *
       
   604  * in which the order of quantification is not the order of occurrence of the
       
   605  * quantified variables as arguments to C. Since we have no control over this
       
   606  * aspect of the nchotomy theorem, we make the correspondence explicit by
       
   607  * pairing the incoming new variable with the term it gets beta-reduced into.
       
   608  *---------------------------------------------------------------------------*)
       
   609 
       
   610 fun alpha_ex_unroll (xlist, tm) =
       
   611   let val (qvars,body) = S.strip_exists tm
       
   612       val vlist = #2(S.strip_comb (S.rhs body))
       
   613       val plist = ListPair.zip (vlist, xlist)
       
   614       val args = map (fn qv => the (gen_assoc (op aconv) (plist, qv))) qvars
       
   615                    handle Library.OPTION => sys_error
       
   616                        "TFL fault [alpha_ex_unroll]: no correspondence"
       
   617       fun build ex      []   = []
       
   618         | build (_$rex) (v::rst) =
       
   619            let val ex1 = betapply(rex, v)
       
   620            in  ex1 :: build ex1 rst
       
   621            end
       
   622      val (nex::exl) = rev (tm::build tm args)
       
   623   in
       
   624   (nex, ListPair.zip (args, rev exl))
       
   625   end;
       
   626 
       
   627 
       
   628 
       
   629 (*----------------------------------------------------------------------------
       
   630  *
       
   631  *             PROVING COMPLETENESS OF PATTERNS
       
   632  *
       
   633  *---------------------------------------------------------------------------*)
       
   634 
       
   635 fun mk_case ty_info usednames thy =
       
   636  let
       
   637  val divide = ipartition (gvvariant usednames)
       
   638  val tych = Thry.typecheck thy
       
   639  fun tych_binding(x,y) = (tych x, tych y)
       
   640  fun fail s = raise TFL_ERR "mk_case" s
       
   641  fun mk{rows=[],...} = fail"no rows"
       
   642    | mk{path=[], rows = [([], (thm, bindings))]} =
       
   643                          R.IT_EXISTS (map tych_binding bindings) thm
       
   644    | mk{path = u::rstp, rows as (p::_, _)::_} =
       
   645      let val (pat_rectangle,rights) = ListPair.unzip rows
       
   646          val col0 = map hd pat_rectangle
       
   647          val pat_rectangle' = map tl pat_rectangle
       
   648      in
       
   649      if (forall is_Free col0) (* column 0 is all variables *)
       
   650      then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[(u,v)]))
       
   651                                 (ListPair.zip (rights, col0))
       
   652           in mk{path = rstp, rows = ListPair.zip (pat_rectangle', rights')}
       
   653           end
       
   654      else                     (* column 0 is all constructors *)
       
   655      let val Type (ty_name,_) = type_of p
       
   656      in
       
   657      case (ty_info ty_name)
       
   658      of None => fail("Not a known datatype: "^ty_name)
       
   659       | Some{constructors,nchotomy} =>
       
   660         let val thm' = R.ISPEC (tych u) nchotomy
       
   661             val disjuncts = S.strip_disj (concl thm')
       
   662             val subproblems = divide(constructors, rows)
       
   663             val groups      = map #group subproblems
       
   664             and new_formals = map #new_formals subproblems
       
   665             val existentials = ListPair.map alpha_ex_unroll
       
   666                                    (new_formals, disjuncts)
       
   667             val constraints = map #1 existentials
       
   668             val vexl = map #2 existentials
       
   669             fun expnd tm (pats,(th,b)) = (pats,(R.SUBS[R.ASSUME(tych tm)]th,b))
       
   670             val news = map (fn (nf,rows,c) => {path = nf@rstp,
       
   671                                                rows = map (expnd c) rows})
       
   672                            (U.zip3 new_formals groups constraints)
       
   673             val recursive_thms = map mk news
       
   674             val build_exists = foldr
       
   675                                 (fn((x,t), th) =>
       
   676                                  R.CHOOSE (tych x, R.ASSUME (tych t)) th)
       
   677             val thms' = ListPair.map build_exists (vexl, recursive_thms)
       
   678             val same_concls = R.EVEN_ORS thms'
       
   679         in R.DISJ_CASESL thm' same_concls
       
   680         end
       
   681      end end
       
   682  in mk
       
   683  end;
       
   684 
       
   685 
       
   686 fun complete_cases thy =
       
   687  let val tych = Thry.typecheck thy
       
   688      val ty_info = Thry.induct_info thy
       
   689  in fn pats =>
       
   690  let val names = foldr add_term_names (pats,[])
       
   691      val T = type_of (hd pats)
       
   692      val aname = Term.variant names "a"
       
   693      val vname = Term.variant (aname::names) "v"
       
   694      val a = Free (aname, T)
       
   695      val v = Free (vname, T)
       
   696      val a_eq_v = HOLogic.mk_eq(a,v)
       
   697      val ex_th0 = R.EXISTS (tych (S.mk_exists{Bvar=v,Body=a_eq_v}), tych a)
       
   698                            (R.REFL (tych a))
       
   699      val th0 = R.ASSUME (tych a_eq_v)
       
   700      val rows = map (fn x => ([x], (th0,[]))) pats
       
   701  in
       
   702  R.GEN (tych a)
       
   703        (R.RIGHT_ASSOC
       
   704           (R.CHOOSE(tych v, ex_th0)
       
   705                 (mk_case ty_info (vname::aname::names)
       
   706                  thy {path=[v], rows=rows})))
       
   707  end end;
       
   708 
       
   709 
       
   710 (*---------------------------------------------------------------------------
       
   711  * Constructing induction hypotheses: one for each recursive call.
       
   712  *
       
   713  * Note. R will never occur as a variable in the ind_clause, because
       
   714  * to do so, it would have to be from a nested definition, and we don't
       
   715  * allow nested defns to have R variable.
       
   716  *
       
   717  * Note. When the context is empty, there can be no local variables.
       
   718  *---------------------------------------------------------------------------*)
       
   719 (*
       
   720 local infix 5 ==>
       
   721       fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
       
   722 in
       
   723 fun build_ih f P (pat,TCs) =
       
   724  let val globals = S.free_vars_lr pat
       
   725      fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
       
   726      fun dest_TC tm =
       
   727          let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
       
   728              val (R,y,_) = S.dest_relation R_y_pat
       
   729              val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
       
   730          in case cntxt
       
   731               of [] => (P_y, (tm,[]))
       
   732                | _  => let
       
   733                     val imp = S.list_mk_conj cntxt ==> P_y
       
   734                     val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
       
   735                     val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
       
   736                     in (S.list_mk_forall(locals,imp), (tm,locals)) end
       
   737          end
       
   738  in case TCs
       
   739     of [] => (S.list_mk_forall(globals, P$pat), [])
       
   740      |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
       
   741                  val ind_clause = S.list_mk_conj ihs ==> P$pat
       
   742              in (S.list_mk_forall(globals,ind_clause), TCs_locals)
       
   743              end
       
   744  end
       
   745 end;
       
   746 *)
       
   747 
       
   748 local infix 5 ==>
       
   749       fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
       
   750 in
       
   751 fun build_ih f (P,SV) (pat,TCs) =
       
   752  let val pat_vars = S.free_vars_lr pat
       
   753      val globals = pat_vars@SV
       
   754      fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
       
   755      fun dest_TC tm =
       
   756          let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
       
   757              val (R,y,_) = S.dest_relation R_y_pat
       
   758              val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
       
   759          in case cntxt
       
   760               of [] => (P_y, (tm,[]))
       
   761                | _  => let
       
   762                     val imp = S.list_mk_conj cntxt ==> P_y
       
   763                     val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
       
   764                     val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
       
   765                     in (S.list_mk_forall(locals,imp), (tm,locals)) end
       
   766          end
       
   767  in case TCs
       
   768     of [] => (S.list_mk_forall(pat_vars, P$pat), [])
       
   769      |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
       
   770                  val ind_clause = S.list_mk_conj ihs ==> P$pat
       
   771              in (S.list_mk_forall(pat_vars,ind_clause), TCs_locals)
       
   772              end
       
   773  end
       
   774 end;
       
   775 
       
   776 (*---------------------------------------------------------------------------
       
   777  * This function makes good on the promise made in "build_ih".
       
   778  *
       
   779  * Input  is tm = "(!y. R y pat ==> P y) ==> P pat",
       
   780  *           TCs = TC_1[pat] ... TC_n[pat]
       
   781  *           thm = ih1 /\ ... /\ ih_n |- ih[pat]
       
   782  *---------------------------------------------------------------------------*)
       
   783 fun prove_case f thy (tm,TCs_locals,thm) =
       
   784  let val tych = Thry.typecheck thy
       
   785      val antc = tych(#ant(S.dest_imp tm))
       
   786      val thm' = R.SPEC_ALL thm
       
   787      fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
       
   788      fun get_cntxt TC = tych(#ant(S.dest_imp(#2(S.strip_forall(concl TC)))))
       
   789      fun mk_ih ((TC,locals),th2,nested) =
       
   790          R.GENL (map tych locals)
       
   791             (if nested then R.DISCH (get_cntxt TC) th2 handle U.ERR _ => th2
       
   792              else if S.is_imp (concl TC) then R.IMP_TRANS TC th2
       
   793              else R.MP th2 TC)
       
   794  in
       
   795  R.DISCH antc
       
   796  (if S.is_imp(concl thm') (* recursive calls in this clause *)
       
   797   then let val th1 = R.ASSUME antc
       
   798            val TCs = map #1 TCs_locals
       
   799            val ylist = map (#2 o S.dest_relation o #2 o S.strip_imp o
       
   800                             #2 o S.strip_forall) TCs
       
   801            val TClist = map (fn(TC,lvs) => (R.SPEC_ALL(R.ASSUME(tych TC)),lvs))
       
   802                             TCs_locals
       
   803            val th2list = map (U.C R.SPEC th1 o tych) ylist
       
   804            val nlist = map nested TCs
       
   805            val triples = U.zip3 TClist th2list nlist
       
   806            val Pylist = map mk_ih triples
       
   807        in R.MP thm' (R.LIST_CONJ Pylist) end
       
   808   else thm')
       
   809  end;
       
   810 
       
   811 
       
   812 (*---------------------------------------------------------------------------
       
   813  *
       
   814  *         x = (v1,...,vn)  |- M[x]
       
   815  *    ---------------------------------------------
       
   816  *      ?v1 ... vn. x = (v1,...,vn) |- M[x]
       
   817  *
       
   818  *---------------------------------------------------------------------------*)
       
   819 fun LEFT_ABS_VSTRUCT tych thm =
       
   820   let fun CHOOSER v (tm,thm) =
       
   821         let val ex_tm = S.mk_exists{Bvar=v,Body=tm}
       
   822         in (ex_tm, R.CHOOSE(tych v, R.ASSUME (tych ex_tm)) thm)
       
   823         end
       
   824       val [veq] = filter (can S.dest_eq) (#1 (R.dest_thm thm))
       
   825       val {lhs,rhs} = S.dest_eq veq
       
   826       val L = S.free_vars_lr rhs
       
   827   in  #2 (U.itlist CHOOSER L (veq,thm))  end;
       
   828 
       
   829 
       
   830 (*----------------------------------------------------------------------------
       
   831  * Input : f, R,  and  [(pat1,TCs1),..., (patn,TCsn)]
       
   832  *
       
   833  * Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
       
   834  * recursion induction (Rinduct) by proving the antecedent of Sinduct from
       
   835  * the antecedent of Rinduct.
       
   836  *---------------------------------------------------------------------------*)
       
   837 fun mk_induction thy {fconst, R, SV, pat_TCs_list} =
       
   838 let val tych = Thry.typecheck thy
       
   839     val Sinduction = R.UNDISCH (R.ISPEC (tych R) Thms.WF_INDUCTION_THM)
       
   840     val (pats,TCsl) = ListPair.unzip pat_TCs_list
       
   841     val case_thm = complete_cases thy pats
       
   842     val domain = (type_of o hd) pats
       
   843     val Pname = Term.variant (foldr (foldr add_term_names)
       
   844                               (pats::TCsl, [])) "P"
       
   845     val P = Free(Pname, domain --> HOLogic.boolT)
       
   846     val Sinduct = R.SPEC (tych P) Sinduction
       
   847     val Sinduct_assumf = S.rand ((#ant o S.dest_imp o concl) Sinduct)
       
   848     val Rassums_TCl' = map (build_ih fconst (P,SV)) pat_TCs_list
       
   849     val (Rassums,TCl') = ListPair.unzip Rassums_TCl'
       
   850     val Rinduct_assum = R.ASSUME (tych (S.list_mk_conj Rassums))
       
   851     val cases = map (fn pat => betapply (Sinduct_assumf, pat)) pats
       
   852     val tasks = U.zip3 cases TCl' (R.CONJUNCTS Rinduct_assum)
       
   853     val proved_cases = map (prove_case fconst thy) tasks
       
   854     val v = Free (variant (foldr add_term_names (map concl proved_cases, []))
       
   855                     "v",
       
   856                   domain)
       
   857     val vtyped = tych v
       
   858     val substs = map (R.SYM o R.ASSUME o tych o (curry HOLogic.mk_eq v)) pats
       
   859     val proved_cases1 = ListPair.map (fn (th,th') => R.SUBS[th]th')
       
   860                           (substs, proved_cases)
       
   861     val abs_cases = map (LEFT_ABS_VSTRUCT tych) proved_cases1
       
   862     val dant = R.GEN vtyped (R.DISJ_CASESL (R.ISPEC vtyped case_thm) abs_cases)
       
   863     val dc = R.MP Sinduct dant
       
   864     val Parg_ty = type_of(#Bvar(S.dest_forall(concl dc)))
       
   865     val vars = map (gvvariant[Pname]) (S.strip_prod_type Parg_ty)
       
   866     val dc' = U.itlist (R.GEN o tych) vars
       
   867                        (R.SPEC (tych(S.mk_vstruct Parg_ty vars)) dc)
       
   868 in
       
   869    R.GEN (tych P) (R.DISCH (tych(concl Rinduct_assum)) dc')
       
   870 end
       
   871 handle U.ERR _ => raise TFL_ERR "mk_induction" "failed derivation";
       
   872 
       
   873 
       
   874 
       
   875 
       
   876 (*---------------------------------------------------------------------------
       
   877  *
       
   878  *                        POST PROCESSING
       
   879  *
       
   880  *---------------------------------------------------------------------------*)
       
   881 
       
   882 
       
   883 fun simplify_induction thy hth ind =
       
   884   let val tych = Thry.typecheck thy
       
   885       val (asl,_) = R.dest_thm ind
       
   886       val (_,tc_eq_tc') = R.dest_thm hth
       
   887       val tc = S.lhs tc_eq_tc'
       
   888       fun loop [] = ind
       
   889         | loop (asm::rst) =
       
   890           if (can (Thry.match_term thy asm) tc)
       
   891           then R.UNDISCH
       
   892                  (R.MATCH_MP
       
   893                      (R.MATCH_MP Thms.simp_thm (R.DISCH (tych asm) ind))
       
   894                      hth)
       
   895          else loop rst
       
   896   in loop asl
       
   897 end;
       
   898 
       
   899 
       
   900 (*---------------------------------------------------------------------------
       
   901  * The termination condition is an antecedent to the rule, and an
       
   902  * assumption to the theorem.
       
   903  *---------------------------------------------------------------------------*)
       
   904 fun elim_tc tcthm (rule,induction) =
       
   905    (R.MP rule tcthm, R.PROVE_HYP tcthm induction)
       
   906 
       
   907 
       
   908 fun postprocess{wf_tac, terminator, simplifier} theory {rules,induction,TCs} =
       
   909 let val tych = Thry.typecheck theory
       
   910 
       
   911    (*---------------------------------------------------------------------
       
   912     * Attempt to eliminate WF condition. It's the only assumption of rules
       
   913     *---------------------------------------------------------------------*)
       
   914    val (rules1,induction1)  =
       
   915        let val thm = R.prove(tych(HOLogic.mk_Trueprop
       
   916                                   (hd(#1(R.dest_thm rules)))),
       
   917                              wf_tac)
       
   918        in (R.PROVE_HYP thm rules,  R.PROVE_HYP thm induction)
       
   919        end handle U.ERR _ => (rules,induction);
       
   920 
       
   921    (*----------------------------------------------------------------------
       
   922     * The termination condition (tc) is simplified to |- tc = tc' (there
       
   923     * might not be a change!) and then 3 attempts are made:
       
   924     *
       
   925     *   1. if |- tc = T, then eliminate it with eqT; otherwise,
       
   926     *   2. apply the terminator to tc'. If |- tc' = T then eliminate; else
       
   927     *   3. replace tc by tc' in both the rules and the induction theorem.
       
   928     *---------------------------------------------------------------------*)
       
   929 
       
   930    fun print_thms s L =
       
   931      if !trace then writeln (cat_lines (s :: map string_of_thm L))
       
   932      else ();
       
   933 
       
   934    fun print_cterms s L =
       
   935      if !trace then writeln (cat_lines (s :: map string_of_cterm L))
       
   936      else ();;
       
   937 
       
   938    fun simplify_tc tc (r,ind) =
       
   939        let val tc1 = tych tc
       
   940            val _ = print_cterms "TC before simplification: " [tc1]
       
   941            val tc_eq = simplifier tc1
       
   942            val _ = print_thms "result: " [tc_eq]
       
   943        in
       
   944        elim_tc (R.MATCH_MP Thms.eqT tc_eq) (r,ind)
       
   945        handle U.ERR _ =>
       
   946         (elim_tc (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
       
   947                   (R.prove(tych(HOLogic.mk_Trueprop(S.rhs(concl tc_eq))),
       
   948                            terminator)))
       
   949                  (r,ind)
       
   950          handle U.ERR _ =>
       
   951           (R.UNDISCH(R.MATCH_MP (R.MATCH_MP Thms.simp_thm r) tc_eq),
       
   952            simplify_induction theory tc_eq ind))
       
   953        end
       
   954 
       
   955    (*----------------------------------------------------------------------
       
   956     * Nested termination conditions are harder to get at, since they are
       
   957     * left embedded in the body of the function (and in induction
       
   958     * theorem hypotheses). Our "solution" is to simplify them, and try to
       
   959     * prove termination, but leave the application of the resulting theorem
       
   960     * to a higher level. So things go much as in "simplify_tc": the
       
   961     * termination condition (tc) is simplified to |- tc = tc' (there might
       
   962     * not be a change) and then 2 attempts are made:
       
   963     *
       
   964     *   1. if |- tc = T, then return |- tc; otherwise,
       
   965     *   2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
       
   966     *   3. return |- tc = tc'
       
   967     *---------------------------------------------------------------------*)
       
   968    fun simplify_nested_tc tc =
       
   969       let val tc_eq = simplifier (tych (#2 (S.strip_forall tc)))
       
   970       in
       
   971       R.GEN_ALL
       
   972        (R.MATCH_MP Thms.eqT tc_eq
       
   973         handle U.ERR _ =>
       
   974           (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
       
   975                       (R.prove(tych(HOLogic.mk_Trueprop (S.rhs(concl tc_eq))),
       
   976                                terminator))
       
   977             handle U.ERR _ => tc_eq))
       
   978       end
       
   979 
       
   980    (*-------------------------------------------------------------------
       
   981     * Attempt to simplify the termination conditions in each rule and
       
   982     * in the induction theorem.
       
   983     *-------------------------------------------------------------------*)
       
   984    fun strip_imp tm = if S.is_neg tm then ([],tm) else S.strip_imp tm
       
   985    fun loop ([],extras,R,ind) = (rev R, ind, extras)
       
   986      | loop ((r,ftcs)::rst, nthms, R, ind) =
       
   987         let val tcs = #1(strip_imp (concl r))
       
   988             val extra_tcs = gen_rems (op aconv) (ftcs, tcs)
       
   989             val extra_tc_thms = map simplify_nested_tc extra_tcs
       
   990             val (r1,ind1) = U.rev_itlist simplify_tc tcs (r,ind)
       
   991             val r2 = R.FILTER_DISCH_ALL(not o S.is_WFR) r1
       
   992         in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
       
   993         end
       
   994    val rules_tcs = ListPair.zip (R.CONJUNCTS rules1, TCs)
       
   995    val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
       
   996 in
       
   997   {induction = ind2, rules = R.LIST_CONJ rules2, nested_tcs = extras}
       
   998 end;
       
   999 
       
  1000 
       
  1001 end;