src/HOL/Nonstandard_Analysis/StarDef.thy
changeset 62479 716336f19aa9
parent 62378 85ed00c1fe7c
child 63456 3365c8ec67bd
equal deleted inserted replaced
62478:a62c86d25024 62479:716336f19aa9
       
     1 (*  Title:      HOL/Nonstandard_Analysis/StarDef.thy
       
     2     Author:     Jacques D. Fleuriot and Brian Huffman
       
     3 *)
       
     4 
       
     5 section \<open>Construction of Star Types Using Ultrafilters\<close>
       
     6 
       
     7 theory StarDef
       
     8 imports Free_Ultrafilter
       
     9 begin
       
    10 
       
    11 subsection \<open>A Free Ultrafilter over the Naturals\<close>
       
    12 
       
    13 definition
       
    14   FreeUltrafilterNat :: "nat filter"  ("\<U>") where
       
    15   "\<U> = (SOME U. freeultrafilter U)"
       
    16 
       
    17 lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"
       
    18 apply (unfold FreeUltrafilterNat_def)
       
    19 apply (rule someI_ex)
       
    20 apply (rule freeultrafilter_Ex)
       
    21 apply (rule infinite_UNIV_nat)
       
    22 done
       
    23 
       
    24 interpretation FreeUltrafilterNat: freeultrafilter FreeUltrafilterNat
       
    25 by (rule freeultrafilter_FreeUltrafilterNat)
       
    26 
       
    27 subsection \<open>Definition of \<open>star\<close> type constructor\<close>
       
    28 
       
    29 definition
       
    30   starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" where
       
    31   "starrel = {(X,Y). eventually (\<lambda>n. X n = Y n) \<U>}"
       
    32 
       
    33 definition "star = (UNIV :: (nat \<Rightarrow> 'a) set) // starrel"
       
    34 
       
    35 typedef 'a star = "star :: (nat \<Rightarrow> 'a) set set"
       
    36   unfolding star_def by (auto intro: quotientI)
       
    37 
       
    38 definition
       
    39   star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" where
       
    40   "star_n X = Abs_star (starrel `` {X})"
       
    41 
       
    42 theorem star_cases [case_names star_n, cases type: star]:
       
    43   "(\<And>X. x = star_n X \<Longrightarrow> P) \<Longrightarrow> P"
       
    44 by (cases x, unfold star_n_def star_def, erule quotientE, fast)
       
    45 
       
    46 lemma all_star_eq: "(\<forall>x. P x) = (\<forall>X. P (star_n X))"
       
    47 by (auto, rule_tac x=x in star_cases, simp)
       
    48 
       
    49 lemma ex_star_eq: "(\<exists>x. P x) = (\<exists>X. P (star_n X))"
       
    50 by (auto, rule_tac x=x in star_cases, auto)
       
    51 
       
    52 text \<open>Proving that @{term starrel} is an equivalence relation\<close>
       
    53 
       
    54 lemma starrel_iff [iff]: "((X,Y) \<in> starrel) = (eventually (\<lambda>n. X n = Y n) \<U>)"
       
    55 by (simp add: starrel_def)
       
    56 
       
    57 lemma equiv_starrel: "equiv UNIV starrel"
       
    58 proof (rule equivI)
       
    59   show "refl starrel" by (simp add: refl_on_def)
       
    60   show "sym starrel" by (simp add: sym_def eq_commute)
       
    61   show "trans starrel" by (intro transI) (auto elim: eventually_elim2)
       
    62 qed
       
    63 
       
    64 lemmas equiv_starrel_iff =
       
    65   eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I]
       
    66 
       
    67 lemma starrel_in_star: "starrel``{x} \<in> star"
       
    68 by (simp add: star_def quotientI)
       
    69 
       
    70 lemma star_n_eq_iff: "(star_n X = star_n Y) = (eventually (\<lambda>n. X n = Y n) \<U>)"
       
    71 by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff)
       
    72 
       
    73 
       
    74 subsection \<open>Transfer principle\<close>
       
    75 
       
    76 text \<open>This introduction rule starts each transfer proof.\<close>
       
    77 lemma transfer_start:
       
    78   "P \<equiv> eventually (\<lambda>n. Q) \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
       
    79   by (simp add: FreeUltrafilterNat.proper)
       
    80 
       
    81 text \<open>Initialize transfer tactic.\<close>
       
    82 ML_file "transfer.ML"
       
    83 
       
    84 method_setup transfer = \<open>
       
    85   Attrib.thms >> (fn ths => fn ctxt =>
       
    86     SIMPLE_METHOD' (Transfer_Principle.transfer_tac ctxt ths))
       
    87 \<close> "transfer principle"
       
    88 
       
    89 
       
    90 text \<open>Transfer introduction rules.\<close>
       
    91 
       
    92 lemma transfer_ex [transfer_intro]:
       
    93   "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
       
    94     \<Longrightarrow> \<exists>x::'a star. p x \<equiv> eventually (\<lambda>n. \<exists>x. P n x) \<U>"
       
    95 by (simp only: ex_star_eq eventually_ex)
       
    96 
       
    97 lemma transfer_all [transfer_intro]:
       
    98   "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
       
    99     \<Longrightarrow> \<forall>x::'a star. p x \<equiv> eventually (\<lambda>n. \<forall>x. P n x) \<U>"
       
   100 by (simp only: all_star_eq FreeUltrafilterNat.eventually_all_iff)
       
   101 
       
   102 lemma transfer_not [transfer_intro]:
       
   103   "\<lbrakk>p \<equiv> eventually P \<U>\<rbrakk> \<Longrightarrow> \<not> p \<equiv> eventually (\<lambda>n. \<not> P n) \<U>"
       
   104 by (simp only: FreeUltrafilterNat.eventually_not_iff)
       
   105 
       
   106 lemma transfer_conj [transfer_intro]:
       
   107   "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
       
   108     \<Longrightarrow> p \<and> q \<equiv> eventually (\<lambda>n. P n \<and> Q n) \<U>"
       
   109 by (simp only: eventually_conj_iff)
       
   110 
       
   111 lemma transfer_disj [transfer_intro]:
       
   112   "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
       
   113     \<Longrightarrow> p \<or> q \<equiv> eventually (\<lambda>n. P n \<or> Q n) \<U>"
       
   114 by (simp only: FreeUltrafilterNat.eventually_disj_iff)
       
   115 
       
   116 lemma transfer_imp [transfer_intro]:
       
   117   "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
       
   118     \<Longrightarrow> p \<longrightarrow> q \<equiv> eventually (\<lambda>n. P n \<longrightarrow> Q n) \<U>"
       
   119 by (simp only: FreeUltrafilterNat.eventually_imp_iff)
       
   120 
       
   121 lemma transfer_iff [transfer_intro]:
       
   122   "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
       
   123     \<Longrightarrow> p = q \<equiv> eventually (\<lambda>n. P n = Q n) \<U>"
       
   124 by (simp only: FreeUltrafilterNat.eventually_iff_iff)
       
   125 
       
   126 lemma transfer_if_bool [transfer_intro]:
       
   127   "\<lbrakk>p \<equiv> eventually P \<U>; x \<equiv> eventually X \<U>; y \<equiv> eventually Y \<U>\<rbrakk>
       
   128     \<Longrightarrow> (if p then x else y) \<equiv> eventually (\<lambda>n. if P n then X n else Y n) \<U>"
       
   129 by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not)
       
   130 
       
   131 lemma transfer_eq [transfer_intro]:
       
   132   "\<lbrakk>x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk> \<Longrightarrow> x = y \<equiv> eventually (\<lambda>n. X n = Y n) \<U>"
       
   133 by (simp only: star_n_eq_iff)
       
   134 
       
   135 lemma transfer_if [transfer_intro]:
       
   136   "\<lbrakk>p \<equiv> eventually (\<lambda>n. P n) \<U>; x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk>
       
   137     \<Longrightarrow> (if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)"
       
   138 apply (rule eq_reflection)
       
   139 apply (auto simp add: star_n_eq_iff transfer_not elim!: eventually_mono)
       
   140 done
       
   141 
       
   142 lemma transfer_fun_eq [transfer_intro]:
       
   143   "\<lbrakk>\<And>X. f (star_n X) = g (star_n X)
       
   144     \<equiv> eventually (\<lambda>n. F n (X n) = G n (X n)) \<U>\<rbrakk>
       
   145       \<Longrightarrow> f = g \<equiv> eventually (\<lambda>n. F n = G n) \<U>"
       
   146 by (simp only: fun_eq_iff transfer_all)
       
   147 
       
   148 lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"
       
   149 by (rule reflexive)
       
   150 
       
   151 lemma transfer_bool [transfer_intro]: "p \<equiv> eventually (\<lambda>n. p) \<U>"
       
   152 by (simp add: FreeUltrafilterNat.proper)
       
   153 
       
   154 
       
   155 subsection \<open>Standard elements\<close>
       
   156 
       
   157 definition
       
   158   star_of :: "'a \<Rightarrow> 'a star" where
       
   159   "star_of x == star_n (\<lambda>n. x)"
       
   160 
       
   161 definition
       
   162   Standard :: "'a star set" where
       
   163   "Standard = range star_of"
       
   164 
       
   165 text \<open>Transfer tactic should remove occurrences of @{term star_of}\<close>
       
   166 setup \<open>Transfer_Principle.add_const @{const_name star_of}\<close>
       
   167 
       
   168 declare star_of_def [transfer_intro]
       
   169 
       
   170 lemma star_of_inject: "(star_of x = star_of y) = (x = y)"
       
   171 by (transfer, rule refl)
       
   172 
       
   173 lemma Standard_star_of [simp]: "star_of x \<in> Standard"
       
   174 by (simp add: Standard_def)
       
   175 
       
   176 
       
   177 subsection \<open>Internal functions\<close>
       
   178 
       
   179 definition
       
   180   Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300) where
       
   181   "Ifun f \<equiv> \<lambda>x. Abs_star
       
   182        (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
       
   183 
       
   184 lemma Ifun_congruent2:
       
   185   "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})"
       
   186 by (auto simp add: congruent2_def equiv_starrel_iff elim!: eventually_rev_mp)
       
   187 
       
   188 lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))"
       
   189 by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star
       
   190     UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2])
       
   191 
       
   192 text \<open>Transfer tactic should remove occurrences of @{term Ifun}\<close>
       
   193 setup \<open>Transfer_Principle.add_const @{const_name Ifun}\<close>
       
   194 
       
   195 lemma transfer_Ifun [transfer_intro]:
       
   196   "\<lbrakk>f \<equiv> star_n F; x \<equiv> star_n X\<rbrakk> \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))"
       
   197 by (simp only: Ifun_star_n)
       
   198 
       
   199 lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)"
       
   200 by (transfer, rule refl)
       
   201 
       
   202 lemma Standard_Ifun [simp]:
       
   203   "\<lbrakk>f \<in> Standard; x \<in> Standard\<rbrakk> \<Longrightarrow> f \<star> x \<in> Standard"
       
   204 by (auto simp add: Standard_def)
       
   205 
       
   206 text \<open>Nonstandard extensions of functions\<close>
       
   207 
       
   208 definition
       
   209   starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"  ("*f* _" [80] 80) where
       
   210   "starfun f == \<lambda>x. star_of f \<star> x"
       
   211 
       
   212 definition
       
   213   starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a star \<Rightarrow> 'b star \<Rightarrow> 'c star)"
       
   214     ("*f2* _" [80] 80) where
       
   215   "starfun2 f == \<lambda>x y. star_of f \<star> x \<star> y"
       
   216 
       
   217 declare starfun_def [transfer_unfold]
       
   218 declare starfun2_def [transfer_unfold]
       
   219 
       
   220 lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))"
       
   221 by (simp only: starfun_def star_of_def Ifun_star_n)
       
   222 
       
   223 lemma starfun2_star_n:
       
   224   "( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))"
       
   225 by (simp only: starfun2_def star_of_def Ifun_star_n)
       
   226 
       
   227 lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)"
       
   228 by (transfer, rule refl)
       
   229 
       
   230 lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x"
       
   231 by (transfer, rule refl)
       
   232 
       
   233 lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard"
       
   234 by (simp add: starfun_def)
       
   235 
       
   236 lemma Standard_starfun2 [simp]:
       
   237   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> starfun2 f x y \<in> Standard"
       
   238 by (simp add: starfun2_def)
       
   239 
       
   240 lemma Standard_starfun_iff:
       
   241   assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
       
   242   shows "(starfun f x \<in> Standard) = (x \<in> Standard)"
       
   243 proof
       
   244   assume "x \<in> Standard"
       
   245   thus "starfun f x \<in> Standard" by simp
       
   246 next
       
   247   have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y"
       
   248     using inj by transfer
       
   249   assume "starfun f x \<in> Standard"
       
   250   then obtain b where b: "starfun f x = star_of b"
       
   251     unfolding Standard_def ..
       
   252   hence "\<exists>x. starfun f x = star_of b" ..
       
   253   hence "\<exists>a. f a = b" by transfer
       
   254   then obtain a where "f a = b" ..
       
   255   hence "starfun f (star_of a) = star_of b" by transfer
       
   256   with b have "starfun f x = starfun f (star_of a)" by simp
       
   257   hence "x = star_of a" by (rule inj')
       
   258   thus "x \<in> Standard"
       
   259     unfolding Standard_def by auto
       
   260 qed
       
   261 
       
   262 lemma Standard_starfun2_iff:
       
   263   assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'"
       
   264   shows "(starfun2 f x y \<in> Standard) = (x \<in> Standard \<and> y \<in> Standard)"
       
   265 proof
       
   266   assume "x \<in> Standard \<and> y \<in> Standard"
       
   267   thus "starfun2 f x y \<in> Standard" by simp
       
   268 next
       
   269   have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w"
       
   270     using inj by transfer
       
   271   assume "starfun2 f x y \<in> Standard"
       
   272   then obtain c where c: "starfun2 f x y = star_of c"
       
   273     unfolding Standard_def ..
       
   274   hence "\<exists>x y. starfun2 f x y = star_of c" by auto
       
   275   hence "\<exists>a b. f a b = c" by transfer
       
   276   then obtain a b where "f a b = c" by auto
       
   277   hence "starfun2 f (star_of a) (star_of b) = star_of c"
       
   278     by transfer
       
   279   with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)"
       
   280     by simp
       
   281   hence "x = star_of a \<and> y = star_of b"
       
   282     by (rule inj')
       
   283   thus "x \<in> Standard \<and> y \<in> Standard"
       
   284     unfolding Standard_def by auto
       
   285 qed
       
   286 
       
   287 
       
   288 subsection \<open>Internal predicates\<close>
       
   289 
       
   290 definition unstar :: "bool star \<Rightarrow> bool" where
       
   291   "unstar b \<longleftrightarrow> b = star_of True"
       
   292 
       
   293 lemma unstar_star_n: "unstar (star_n P) = (eventually P \<U>)"
       
   294 by (simp add: unstar_def star_of_def star_n_eq_iff)
       
   295 
       
   296 lemma unstar_star_of [simp]: "unstar (star_of p) = p"
       
   297 by (simp add: unstar_def star_of_inject)
       
   298 
       
   299 text \<open>Transfer tactic should remove occurrences of @{term unstar}\<close>
       
   300 setup \<open>Transfer_Principle.add_const @{const_name unstar}\<close>
       
   301 
       
   302 lemma transfer_unstar [transfer_intro]:
       
   303   "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> eventually P \<U>"
       
   304 by (simp only: unstar_star_n)
       
   305 
       
   306 definition
       
   307   starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  ("*p* _" [80] 80) where
       
   308   "*p* P = (\<lambda>x. unstar (star_of P \<star> x))"
       
   309 
       
   310 definition
       
   311   starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  ("*p2* _" [80] 80) where
       
   312   "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"
       
   313 
       
   314 declare starP_def [transfer_unfold]
       
   315 declare starP2_def [transfer_unfold]
       
   316 
       
   317 lemma starP_star_n: "( *p* P) (star_n X) = (eventually (\<lambda>n. P (X n)) \<U>)"
       
   318 by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n)
       
   319 
       
   320 lemma starP2_star_n:
       
   321   "( *p2* P) (star_n X) (star_n Y) = (eventually (\<lambda>n. P (X n) (Y n)) \<U>)"
       
   322 by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n)
       
   323 
       
   324 lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x"
       
   325 by (transfer, rule refl)
       
   326 
       
   327 lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x"
       
   328 by (transfer, rule refl)
       
   329 
       
   330 
       
   331 subsection \<open>Internal sets\<close>
       
   332 
       
   333 definition
       
   334   Iset :: "'a set star \<Rightarrow> 'a star set" where
       
   335   "Iset A = {x. ( *p2* op \<in>) x A}"
       
   336 
       
   337 lemma Iset_star_n:
       
   338   "(star_n X \<in> Iset (star_n A)) = (eventually (\<lambda>n. X n \<in> A n) \<U>)"
       
   339 by (simp add: Iset_def starP2_star_n)
       
   340 
       
   341 text \<open>Transfer tactic should remove occurrences of @{term Iset}\<close>
       
   342 setup \<open>Transfer_Principle.add_const @{const_name Iset}\<close>
       
   343 
       
   344 lemma transfer_mem [transfer_intro]:
       
   345   "\<lbrakk>x \<equiv> star_n X; a \<equiv> Iset (star_n A)\<rbrakk>
       
   346     \<Longrightarrow> x \<in> a \<equiv> eventually (\<lambda>n. X n \<in> A n) \<U>"
       
   347 by (simp only: Iset_star_n)
       
   348 
       
   349 lemma transfer_Collect [transfer_intro]:
       
   350   "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
       
   351     \<Longrightarrow> Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"
       
   352 by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n)
       
   353 
       
   354 lemma transfer_set_eq [transfer_intro]:
       
   355   "\<lbrakk>a \<equiv> Iset (star_n A); b \<equiv> Iset (star_n B)\<rbrakk>
       
   356     \<Longrightarrow> a = b \<equiv> eventually (\<lambda>n. A n = B n) \<U>"
       
   357 by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem)
       
   358 
       
   359 lemma transfer_ball [transfer_intro]:
       
   360   "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
       
   361     \<Longrightarrow> \<forall>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<forall>x\<in>A n. P n x) \<U>"
       
   362 by (simp only: Ball_def transfer_all transfer_imp transfer_mem)
       
   363 
       
   364 lemma transfer_bex [transfer_intro]:
       
   365   "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
       
   366     \<Longrightarrow> \<exists>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<exists>x\<in>A n. P n x) \<U>"
       
   367 by (simp only: Bex_def transfer_ex transfer_conj transfer_mem)
       
   368 
       
   369 lemma transfer_Iset [transfer_intro]:
       
   370   "\<lbrakk>a \<equiv> star_n A\<rbrakk> \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))"
       
   371 by simp
       
   372 
       
   373 text \<open>Nonstandard extensions of sets.\<close>
       
   374 
       
   375 definition
       
   376   starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) where
       
   377   "starset A = Iset (star_of A)"
       
   378 
       
   379 declare starset_def [transfer_unfold]
       
   380 
       
   381 lemma starset_mem: "(star_of x \<in> *s* A) = (x \<in> A)"
       
   382 by (transfer, rule refl)
       
   383 
       
   384 lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)"
       
   385 by (transfer UNIV_def, rule refl)
       
   386 
       
   387 lemma starset_empty: "*s* {} = {}"
       
   388 by (transfer empty_def, rule refl)
       
   389 
       
   390 lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)"
       
   391 by (transfer insert_def Un_def, rule refl)
       
   392 
       
   393 lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B"
       
   394 by (transfer Un_def, rule refl)
       
   395 
       
   396 lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B"
       
   397 by (transfer Int_def, rule refl)
       
   398 
       
   399 lemma starset_Compl: "*s* -A = -( *s* A)"
       
   400 by (transfer Compl_eq, rule refl)
       
   401 
       
   402 lemma starset_diff: "*s* (A - B) = *s* A - *s* B"
       
   403 by (transfer set_diff_eq, rule refl)
       
   404 
       
   405 lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)"
       
   406 by (transfer image_def, rule refl)
       
   407 
       
   408 lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)"
       
   409 by (transfer vimage_def, rule refl)
       
   410 
       
   411 lemma starset_subset: "( *s* A \<subseteq> *s* B) = (A \<subseteq> B)"
       
   412 by (transfer subset_eq, rule refl)
       
   413 
       
   414 lemma starset_eq: "( *s* A = *s* B) = (A = B)"
       
   415 by (transfer, rule refl)
       
   416 
       
   417 lemmas starset_simps [simp] =
       
   418   starset_mem     starset_UNIV
       
   419   starset_empty   starset_insert
       
   420   starset_Un      starset_Int
       
   421   starset_Compl   starset_diff
       
   422   starset_image   starset_vimage
       
   423   starset_subset  starset_eq
       
   424 
       
   425 
       
   426 subsection \<open>Syntactic classes\<close>
       
   427 
       
   428 instantiation star :: (zero) zero
       
   429 begin
       
   430 
       
   431 definition
       
   432   star_zero_def:    "0 \<equiv> star_of 0"
       
   433 
       
   434 instance ..
       
   435 
       
   436 end
       
   437 
       
   438 instantiation star :: (one) one
       
   439 begin
       
   440 
       
   441 definition
       
   442   star_one_def:     "1 \<equiv> star_of 1"
       
   443 
       
   444 instance ..
       
   445 
       
   446 end
       
   447 
       
   448 instantiation star :: (plus) plus
       
   449 begin
       
   450 
       
   451 definition
       
   452   star_add_def:     "(op +) \<equiv> *f2* (op +)"
       
   453 
       
   454 instance ..
       
   455 
       
   456 end
       
   457 
       
   458 instantiation star :: (times) times
       
   459 begin
       
   460 
       
   461 definition
       
   462   star_mult_def:    "(op *) \<equiv> *f2* (op *)"
       
   463 
       
   464 instance ..
       
   465 
       
   466 end
       
   467 
       
   468 instantiation star :: (uminus) uminus
       
   469 begin
       
   470 
       
   471 definition
       
   472   star_minus_def:   "uminus \<equiv> *f* uminus"
       
   473 
       
   474 instance ..
       
   475 
       
   476 end
       
   477 
       
   478 instantiation star :: (minus) minus
       
   479 begin
       
   480 
       
   481 definition
       
   482   star_diff_def:    "(op -) \<equiv> *f2* (op -)"
       
   483 
       
   484 instance ..
       
   485 
       
   486 end
       
   487 
       
   488 instantiation star :: (abs) abs
       
   489 begin
       
   490 
       
   491 definition
       
   492   star_abs_def:     "abs \<equiv> *f* abs"
       
   493 
       
   494 instance ..
       
   495 
       
   496 end
       
   497 
       
   498 instantiation star :: (sgn) sgn
       
   499 begin
       
   500 
       
   501 definition
       
   502   star_sgn_def:     "sgn \<equiv> *f* sgn"
       
   503 
       
   504 instance ..
       
   505 
       
   506 end
       
   507 
       
   508 instantiation star :: (divide) divide
       
   509 begin
       
   510 
       
   511 definition
       
   512   star_divide_def:  "divide \<equiv> *f2* divide"
       
   513 
       
   514 instance ..
       
   515 
       
   516 end
       
   517 
       
   518 instantiation star :: (inverse) inverse
       
   519 begin
       
   520 
       
   521 definition
       
   522   star_inverse_def: "inverse \<equiv> *f* inverse"
       
   523 
       
   524 instance ..
       
   525 
       
   526 end
       
   527 
       
   528 instance star :: (Rings.dvd) Rings.dvd ..
       
   529 
       
   530 instantiation star :: (Divides.div) Divides.div
       
   531 begin
       
   532 
       
   533 definition
       
   534   star_mod_def:     "(op mod) \<equiv> *f2* (op mod)"
       
   535 
       
   536 instance ..
       
   537 
       
   538 end
       
   539 
       
   540 instantiation star :: (ord) ord
       
   541 begin
       
   542 
       
   543 definition
       
   544   star_le_def:      "(op \<le>) \<equiv> *p2* (op \<le>)"
       
   545 
       
   546 definition
       
   547   star_less_def:    "(op <) \<equiv> *p2* (op <)"
       
   548 
       
   549 instance ..
       
   550 
       
   551 end
       
   552 
       
   553 lemmas star_class_defs [transfer_unfold] =
       
   554   star_zero_def     star_one_def
       
   555   star_add_def      star_diff_def     star_minus_def
       
   556   star_mult_def     star_divide_def   star_inverse_def
       
   557   star_le_def       star_less_def     star_abs_def       star_sgn_def
       
   558   star_mod_def
       
   559 
       
   560 text \<open>Class operations preserve standard elements\<close>
       
   561 
       
   562 lemma Standard_zero: "0 \<in> Standard"
       
   563 by (simp add: star_zero_def)
       
   564 
       
   565 lemma Standard_one: "1 \<in> Standard"
       
   566 by (simp add: star_one_def)
       
   567 
       
   568 lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"
       
   569 by (simp add: star_add_def)
       
   570 
       
   571 lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"
       
   572 by (simp add: star_diff_def)
       
   573 
       
   574 lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
       
   575 by (simp add: star_minus_def)
       
   576 
       
   577 lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"
       
   578 by (simp add: star_mult_def)
       
   579 
       
   580 lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"
       
   581 by (simp add: star_divide_def)
       
   582 
       
   583 lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
       
   584 by (simp add: star_inverse_def)
       
   585 
       
   586 lemma Standard_abs: "x \<in> Standard \<Longrightarrow> \<bar>x\<bar> \<in> Standard"
       
   587 by (simp add: star_abs_def)
       
   588 
       
   589 lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"
       
   590 by (simp add: star_mod_def)
       
   591 
       
   592 lemmas Standard_simps [simp] =
       
   593   Standard_zero  Standard_one
       
   594   Standard_add   Standard_diff    Standard_minus
       
   595   Standard_mult  Standard_divide  Standard_inverse
       
   596   Standard_abs   Standard_mod
       
   597 
       
   598 text \<open>@{term star_of} preserves class operations\<close>
       
   599 
       
   600 lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
       
   601 by transfer (rule refl)
       
   602 
       
   603 lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
       
   604 by transfer (rule refl)
       
   605 
       
   606 lemma star_of_minus: "star_of (-x) = - star_of x"
       
   607 by transfer (rule refl)
       
   608 
       
   609 lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
       
   610 by transfer (rule refl)
       
   611 
       
   612 lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
       
   613 by transfer (rule refl)
       
   614 
       
   615 lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
       
   616 by transfer (rule refl)
       
   617 
       
   618 lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
       
   619 by transfer (rule refl)
       
   620 
       
   621 lemma star_of_abs: "star_of \<bar>x\<bar> = \<bar>star_of x\<bar>"
       
   622 by transfer (rule refl)
       
   623 
       
   624 text \<open>@{term star_of} preserves numerals\<close>
       
   625 
       
   626 lemma star_of_zero: "star_of 0 = 0"
       
   627 by transfer (rule refl)
       
   628 
       
   629 lemma star_of_one: "star_of 1 = 1"
       
   630 by transfer (rule refl)
       
   631 
       
   632 text \<open>@{term star_of} preserves orderings\<close>
       
   633 
       
   634 lemma star_of_less: "(star_of x < star_of y) = (x < y)"
       
   635 by transfer (rule refl)
       
   636 
       
   637 lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
       
   638 by transfer (rule refl)
       
   639 
       
   640 lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
       
   641 by transfer (rule refl)
       
   642 
       
   643 text\<open>As above, for 0\<close>
       
   644 
       
   645 lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
       
   646 lemmas star_of_0_le   = star_of_le   [of 0, simplified star_of_zero]
       
   647 lemmas star_of_0_eq   = star_of_eq   [of 0, simplified star_of_zero]
       
   648 
       
   649 lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
       
   650 lemmas star_of_le_0   = star_of_le   [of _ 0, simplified star_of_zero]
       
   651 lemmas star_of_eq_0   = star_of_eq   [of _ 0, simplified star_of_zero]
       
   652 
       
   653 text\<open>As above, for 1\<close>
       
   654 
       
   655 lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
       
   656 lemmas star_of_1_le   = star_of_le   [of 1, simplified star_of_one]
       
   657 lemmas star_of_1_eq   = star_of_eq   [of 1, simplified star_of_one]
       
   658 
       
   659 lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
       
   660 lemmas star_of_le_1   = star_of_le   [of _ 1, simplified star_of_one]
       
   661 lemmas star_of_eq_1   = star_of_eq   [of _ 1, simplified star_of_one]
       
   662 
       
   663 lemmas star_of_simps [simp] =
       
   664   star_of_add     star_of_diff    star_of_minus
       
   665   star_of_mult    star_of_divide  star_of_inverse
       
   666   star_of_mod     star_of_abs
       
   667   star_of_zero    star_of_one
       
   668   star_of_less    star_of_le      star_of_eq
       
   669   star_of_0_less  star_of_0_le    star_of_0_eq
       
   670   star_of_less_0  star_of_le_0    star_of_eq_0
       
   671   star_of_1_less  star_of_1_le    star_of_1_eq
       
   672   star_of_less_1  star_of_le_1    star_of_eq_1
       
   673 
       
   674 subsection \<open>Ordering and lattice classes\<close>
       
   675 
       
   676 instance star :: (order) order
       
   677 apply (intro_classes)
       
   678 apply (transfer, rule less_le_not_le)
       
   679 apply (transfer, rule order_refl)
       
   680 apply (transfer, erule (1) order_trans)
       
   681 apply (transfer, erule (1) order_antisym)
       
   682 done
       
   683 
       
   684 instantiation star :: (semilattice_inf) semilattice_inf
       
   685 begin
       
   686 
       
   687 definition
       
   688   star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
       
   689 
       
   690 instance
       
   691   by (standard; transfer) auto
       
   692 
       
   693 end
       
   694 
       
   695 instantiation star :: (semilattice_sup) semilattice_sup
       
   696 begin
       
   697 
       
   698 definition
       
   699   star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
       
   700 
       
   701 instance
       
   702   by (standard; transfer) auto
       
   703 
       
   704 end
       
   705 
       
   706 instance star :: (lattice) lattice ..
       
   707 
       
   708 instance star :: (distrib_lattice) distrib_lattice
       
   709   by (standard; transfer) (auto simp add: sup_inf_distrib1)
       
   710 
       
   711 lemma Standard_inf [simp]:
       
   712   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"
       
   713 by (simp add: star_inf_def)
       
   714 
       
   715 lemma Standard_sup [simp]:
       
   716   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"
       
   717 by (simp add: star_sup_def)
       
   718 
       
   719 lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
       
   720 by transfer (rule refl)
       
   721 
       
   722 lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
       
   723 by transfer (rule refl)
       
   724 
       
   725 instance star :: (linorder) linorder
       
   726 by (intro_classes, transfer, rule linorder_linear)
       
   727 
       
   728 lemma star_max_def [transfer_unfold]: "max = *f2* max"
       
   729 apply (rule ext, rule ext)
       
   730 apply (unfold max_def, transfer, fold max_def)
       
   731 apply (rule refl)
       
   732 done
       
   733 
       
   734 lemma star_min_def [transfer_unfold]: "min = *f2* min"
       
   735 apply (rule ext, rule ext)
       
   736 apply (unfold min_def, transfer, fold min_def)
       
   737 apply (rule refl)
       
   738 done
       
   739 
       
   740 lemma Standard_max [simp]:
       
   741   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"
       
   742 by (simp add: star_max_def)
       
   743 
       
   744 lemma Standard_min [simp]:
       
   745   "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"
       
   746 by (simp add: star_min_def)
       
   747 
       
   748 lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
       
   749 by transfer (rule refl)
       
   750 
       
   751 lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
       
   752 by transfer (rule refl)
       
   753 
       
   754 
       
   755 subsection \<open>Ordered group classes\<close>
       
   756 
       
   757 instance star :: (semigroup_add) semigroup_add
       
   758 by (intro_classes, transfer, rule add.assoc)
       
   759 
       
   760 instance star :: (ab_semigroup_add) ab_semigroup_add
       
   761 by (intro_classes, transfer, rule add.commute)
       
   762 
       
   763 instance star :: (semigroup_mult) semigroup_mult
       
   764 by (intro_classes, transfer, rule mult.assoc)
       
   765 
       
   766 instance star :: (ab_semigroup_mult) ab_semigroup_mult
       
   767 by (intro_classes, transfer, rule mult.commute)
       
   768 
       
   769 instance star :: (comm_monoid_add) comm_monoid_add
       
   770 by (intro_classes, transfer, rule comm_monoid_add_class.add_0)
       
   771 
       
   772 instance star :: (monoid_mult) monoid_mult
       
   773 apply (intro_classes)
       
   774 apply (transfer, rule mult_1_left)
       
   775 apply (transfer, rule mult_1_right)
       
   776 done
       
   777 
       
   778 instance star :: (power) power ..
       
   779 
       
   780 instance star :: (comm_monoid_mult) comm_monoid_mult
       
   781 by (intro_classes, transfer, rule mult_1)
       
   782 
       
   783 instance star :: (cancel_semigroup_add) cancel_semigroup_add
       
   784 apply (intro_classes)
       
   785 apply (transfer, erule add_left_imp_eq)
       
   786 apply (transfer, erule add_right_imp_eq)
       
   787 done
       
   788 
       
   789 instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
       
   790 by intro_classes (transfer, simp add: diff_diff_eq)+
       
   791 
       
   792 instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
       
   793 
       
   794 instance star :: (ab_group_add) ab_group_add
       
   795 apply (intro_classes)
       
   796 apply (transfer, rule left_minus)
       
   797 apply (transfer, rule diff_conv_add_uminus)
       
   798 done
       
   799 
       
   800 instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add
       
   801 by (intro_classes, transfer, rule add_left_mono)
       
   802 
       
   803 instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
       
   804 
       
   805 instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le
       
   806 by (intro_classes, transfer, rule add_le_imp_le_left)
       
   807 
       
   808 instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add ..
       
   809 instance star :: (ordered_cancel_comm_monoid_add) ordered_cancel_comm_monoid_add ..
       
   810 instance star :: (ordered_ab_group_add) ordered_ab_group_add ..
       
   811 
       
   812 instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs
       
   813   by intro_classes (transfer,
       
   814     simp add: abs_ge_self abs_leI abs_triangle_ineq)+
       
   815 
       
   816 instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add ..
       
   817 
       
   818 
       
   819 subsection \<open>Ring and field classes\<close>
       
   820 
       
   821 instance star :: (semiring) semiring
       
   822   by (intro_classes; transfer) (fact distrib_right distrib_left)+
       
   823 
       
   824 instance star :: (semiring_0) semiring_0
       
   825   by (intro_classes; transfer) simp_all
       
   826 
       
   827 instance star :: (semiring_0_cancel) semiring_0_cancel ..
       
   828 
       
   829 instance star :: (comm_semiring) comm_semiring
       
   830   by (intro_classes; transfer) (fact distrib_right)
       
   831 
       
   832 instance star :: (comm_semiring_0) comm_semiring_0 ..
       
   833 instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
       
   834 
       
   835 instance star :: (zero_neq_one) zero_neq_one
       
   836   by (intro_classes; transfer) (fact zero_neq_one)
       
   837 
       
   838 instance star :: (semiring_1) semiring_1 ..
       
   839 instance star :: (comm_semiring_1) comm_semiring_1 ..
       
   840 
       
   841 declare dvd_def [transfer_refold]
       
   842 
       
   843 instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel
       
   844   by (intro_classes; transfer) (fact right_diff_distrib')
       
   845 
       
   846 instance star :: (semiring_no_zero_divisors) semiring_no_zero_divisors
       
   847   by (intro_classes; transfer) (fact no_zero_divisors)
       
   848 
       
   849 instance star :: (semiring_1_no_zero_divisors) semiring_1_no_zero_divisors ..
       
   850 
       
   851 instance star :: (semiring_no_zero_divisors_cancel) semiring_no_zero_divisors_cancel
       
   852   by (intro_classes; transfer) simp_all
       
   853 
       
   854 instance star :: (semiring_1_cancel) semiring_1_cancel ..
       
   855 instance star :: (ring) ring ..
       
   856 instance star :: (comm_ring) comm_ring ..
       
   857 instance star :: (ring_1) ring_1 ..
       
   858 instance star :: (comm_ring_1) comm_ring_1 ..
       
   859 instance star :: (semidom) semidom ..
       
   860 
       
   861 instance star :: (semidom_divide) semidom_divide
       
   862   by (intro_classes; transfer) simp_all
       
   863 
       
   864 instance star :: (semiring_div) semiring_div
       
   865   by (intro_classes; transfer) (simp_all add: mod_div_equality)
       
   866 
       
   867 instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
       
   868 instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
       
   869 instance star :: (idom) idom ..
       
   870 instance star :: (idom_divide) idom_divide ..
       
   871 
       
   872 instance star :: (division_ring) division_ring
       
   873   by (intro_classes; transfer) (simp_all add: divide_inverse)
       
   874 
       
   875 instance star :: (field) field
       
   876   by (intro_classes; transfer) (simp_all add: divide_inverse)
       
   877 
       
   878 instance star :: (ordered_semiring) ordered_semiring
       
   879   by (intro_classes; transfer) (fact mult_left_mono mult_right_mono)+
       
   880 
       
   881 instance star :: (ordered_cancel_semiring) ordered_cancel_semiring ..
       
   882 
       
   883 instance star :: (linordered_semiring_strict) linordered_semiring_strict
       
   884   by (intro_classes; transfer) (fact mult_strict_left_mono mult_strict_right_mono)+
       
   885 
       
   886 instance star :: (ordered_comm_semiring) ordered_comm_semiring
       
   887   by (intro_classes; transfer) (fact mult_left_mono)
       
   888 
       
   889 instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..
       
   890 
       
   891 instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict
       
   892   by (intro_classes; transfer) (fact mult_strict_left_mono)
       
   893 
       
   894 instance star :: (ordered_ring) ordered_ring ..
       
   895 
       
   896 instance star :: (ordered_ring_abs) ordered_ring_abs
       
   897   by (intro_classes; transfer) (fact abs_eq_mult)
       
   898 
       
   899 instance star :: (abs_if) abs_if
       
   900   by (intro_classes; transfer) (fact abs_if)
       
   901 
       
   902 instance star :: (sgn_if) sgn_if
       
   903   by (intro_classes; transfer) (fact sgn_if)
       
   904 
       
   905 instance star :: (linordered_ring_strict) linordered_ring_strict ..
       
   906 instance star :: (ordered_comm_ring) ordered_comm_ring ..
       
   907 
       
   908 instance star :: (linordered_semidom) linordered_semidom
       
   909   apply intro_classes
       
   910   apply(transfer, fact zero_less_one)
       
   911   apply(transfer, fact le_add_diff_inverse2)
       
   912   done
       
   913 
       
   914 instance star :: (linordered_idom) linordered_idom ..
       
   915 instance star :: (linordered_field) linordered_field ..
       
   916 
       
   917 subsection \<open>Power\<close>
       
   918 
       
   919 lemma star_power_def [transfer_unfold]:
       
   920   "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
       
   921 proof (rule eq_reflection, rule ext, rule ext)
       
   922   fix n :: nat
       
   923   show "\<And>x::'a star. x ^ n = ( *f* (\<lambda>x. x ^ n)) x"
       
   924   proof (induct n)
       
   925     case 0
       
   926     have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1"
       
   927       by transfer simp
       
   928     then show ?case by simp
       
   929   next
       
   930     case (Suc n)
       
   931     have "\<And>x::'a star. x * ( *f* (\<lambda>x::'a. x ^ n)) x = ( *f* (\<lambda>x::'a. x * x ^ n)) x"
       
   932       by transfer simp
       
   933     with Suc show ?case by simp
       
   934   qed
       
   935 qed
       
   936 
       
   937 lemma Standard_power [simp]: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"
       
   938   by (simp add: star_power_def)
       
   939 
       
   940 lemma star_of_power [simp]: "star_of (x ^ n) = star_of x ^ n"
       
   941   by transfer (rule refl)
       
   942 
       
   943 
       
   944 subsection \<open>Number classes\<close>
       
   945 
       
   946 instance star :: (numeral) numeral ..
       
   947 
       
   948 lemma star_numeral_def [transfer_unfold]:
       
   949   "numeral k = star_of (numeral k)"
       
   950 by (induct k, simp_all only: numeral.simps star_of_one star_of_add)
       
   951 
       
   952 lemma Standard_numeral [simp]: "numeral k \<in> Standard"
       
   953 by (simp add: star_numeral_def)
       
   954 
       
   955 lemma star_of_numeral [simp]: "star_of (numeral k) = numeral k"
       
   956 by transfer (rule refl)
       
   957 
       
   958 lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"
       
   959 by (induct n, simp_all)
       
   960 
       
   961 lemmas star_of_compare_numeral [simp] =
       
   962   star_of_less [of "numeral k", simplified star_of_numeral]
       
   963   star_of_le   [of "numeral k", simplified star_of_numeral]
       
   964   star_of_eq   [of "numeral k", simplified star_of_numeral]
       
   965   star_of_less [of _ "numeral k", simplified star_of_numeral]
       
   966   star_of_le   [of _ "numeral k", simplified star_of_numeral]
       
   967   star_of_eq   [of _ "numeral k", simplified star_of_numeral]
       
   968   star_of_less [of "- numeral k", simplified star_of_numeral]
       
   969   star_of_le   [of "- numeral k", simplified star_of_numeral]
       
   970   star_of_eq   [of "- numeral k", simplified star_of_numeral]
       
   971   star_of_less [of _ "- numeral k", simplified star_of_numeral]
       
   972   star_of_le   [of _ "- numeral k", simplified star_of_numeral]
       
   973   star_of_eq   [of _ "- numeral k", simplified star_of_numeral] for k
       
   974 
       
   975 lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"
       
   976 by (simp add: star_of_nat_def)
       
   977 
       
   978 lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
       
   979 by transfer (rule refl)
       
   980 
       
   981 lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"
       
   982 by (rule_tac z=z in int_diff_cases, simp)
       
   983 
       
   984 lemma Standard_of_int [simp]: "of_int z \<in> Standard"
       
   985 by (simp add: star_of_int_def)
       
   986 
       
   987 lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
       
   988 by transfer (rule refl)
       
   989 
       
   990 instance star :: (semiring_char_0) semiring_char_0
       
   991 proof
       
   992   have "inj (star_of :: 'a \<Rightarrow> 'a star)" by (rule injI) simp
       
   993   then have "inj (star_of \<circ> of_nat :: nat \<Rightarrow> 'a star)" using inj_of_nat by (rule inj_comp)
       
   994   then show "inj (of_nat :: nat \<Rightarrow> 'a star)" by (simp add: comp_def)
       
   995 qed
       
   996 
       
   997 instance star :: (ring_char_0) ring_char_0 ..
       
   998 
       
   999 instance star :: (semiring_parity) semiring_parity
       
  1000 apply intro_classes
       
  1001 apply(transfer, rule odd_one)
       
  1002 apply(transfer, erule (1) odd_even_add)
       
  1003 apply(transfer, erule even_multD)
       
  1004 apply(transfer, erule odd_ex_decrement)
       
  1005 done
       
  1006 
       
  1007 instance star :: (semiring_div_parity) semiring_div_parity
       
  1008 apply intro_classes
       
  1009 apply(transfer, rule parity)
       
  1010 apply(transfer, rule one_mod_two_eq_one)
       
  1011 apply(transfer, rule zero_not_eq_two)
       
  1012 done
       
  1013 
       
  1014 instantiation star :: (semiring_numeral_div) semiring_numeral_div
       
  1015 begin
       
  1016 
       
  1017 definition divmod_star :: "num \<Rightarrow> num \<Rightarrow> 'a star \<times> 'a star"
       
  1018 where
       
  1019   divmod_star_def: "divmod_star m n = (numeral m div numeral n, numeral m mod numeral n)"
       
  1020 
       
  1021 definition divmod_step_star :: "num \<Rightarrow> 'a star \<times> 'a star \<Rightarrow> 'a star \<times> 'a star"
       
  1022 where
       
  1023   "divmod_step_star l qr = (let (q, r) = qr
       
  1024     in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
       
  1025     else (2 * q, r))"
       
  1026 
       
  1027 instance proof
       
  1028   show "divmod m n = (numeral m div numeral n :: 'a star, numeral m mod numeral n)"
       
  1029     for m n by (fact divmod_star_def)
       
  1030   show "divmod_step l qr = (let (q, r) = qr
       
  1031     in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
       
  1032     else (2 * q, r))" for l and qr :: "'a star \<times> 'a star"
       
  1033     by (fact divmod_step_star_def)
       
  1034 qed (transfer,
       
  1035   fact
       
  1036   semiring_numeral_div_class.div_less
       
  1037   semiring_numeral_div_class.mod_less
       
  1038   semiring_numeral_div_class.div_positive
       
  1039   semiring_numeral_div_class.mod_less_eq_dividend
       
  1040   semiring_numeral_div_class.pos_mod_bound
       
  1041   semiring_numeral_div_class.pos_mod_sign
       
  1042   semiring_numeral_div_class.mod_mult2_eq
       
  1043   semiring_numeral_div_class.div_mult2_eq
       
  1044   semiring_numeral_div_class.discrete)+
       
  1045 
       
  1046 end
       
  1047 
       
  1048 declare divmod_algorithm_code [where ?'a = "'a::semiring_numeral_div star", code]
       
  1049 
       
  1050 
       
  1051 subsection \<open>Finite class\<close>
       
  1052 
       
  1053 lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"
       
  1054 by (erule finite_induct, simp_all)
       
  1055 
       
  1056 instance star :: (finite) finite
       
  1057 apply (intro_classes)
       
  1058 apply (subst starset_UNIV [symmetric])
       
  1059 apply (subst starset_finite [OF finite])
       
  1060 apply (rule finite_imageI [OF finite])
       
  1061 done
       
  1062 
       
  1063 end