src/HOL/Probability/Distribution_Functions.thy
changeset 62083 7582b39f51ed
child 62975 1d066f6ab25d
equal deleted inserted replaced
62082:614ef6d7a6b6 62083:7582b39f51ed
       
     1 (*
       
     2   Title    : Distribution_Functions.thy
       
     3   Authors  : Jeremy Avigad and Luke Serafin
       
     4 *)
       
     5 
       
     6 section \<open>Distribution Functions\<close>
       
     7 
       
     8 text \<open>
       
     9 Shows that the cumulative distribution function (cdf) of a distribution (a measure on the reals) is 
       
    10 nondecreasing and right continuous, which tends to 0 and 1 in either direction.
       
    11 
       
    12 Conversely, every such function is the cdf of a unique distribution. This direction defines the 
       
    13 measure in the obvious way on half-open intervals, and then applies the Caratheodory extension 
       
    14 theorem.
       
    15 \<close>
       
    16 
       
    17 (* TODO: the locales "finite_borel_measure" and "real_distribution" are defined here, but maybe they
       
    18  should be somewhere else. *)
       
    19 
       
    20 theory Distribution_Functions
       
    21   imports Probability_Measure "~~/src/HOL/Library/ContNotDenum"
       
    22 begin
       
    23 
       
    24 lemma UN_Ioc_eq_UNIV: "(\<Union>n. { -real n <.. real n}) = UNIV"
       
    25   by auto
       
    26      (metis le_less_trans minus_minus neg_less_iff_less not_le real_arch_simple
       
    27             of_nat_0_le_iff reals_Archimedean2)
       
    28 
       
    29 subsection {* Properties of cdf's *}
       
    30 
       
    31 definition
       
    32   cdf :: "real measure \<Rightarrow> real \<Rightarrow> real"
       
    33 where
       
    34   "cdf M \<equiv> \<lambda>x. measure M {..x}"
       
    35 
       
    36 lemma cdf_def2: "cdf M x = measure M {..x}"
       
    37   by (simp add: cdf_def)
       
    38 
       
    39 locale finite_borel_measure = finite_measure M for M :: "real measure" +
       
    40   assumes M_super_borel: "sets borel \<subseteq> sets M"
       
    41 begin
       
    42 
       
    43 lemma sets_M[intro]: "a \<in> sets borel \<Longrightarrow> a \<in> sets M"
       
    44   using M_super_borel by auto
       
    45 
       
    46 lemma cdf_diff_eq: 
       
    47   assumes "x < y"
       
    48   shows "cdf M y - cdf M x = measure M {x<..y}"
       
    49 proof -
       
    50   from assms have *: "{..x} \<union> {x<..y} = {..y}" by auto
       
    51   have "measure M {..y} = measure M {..x} + measure M {x<..y}"
       
    52     by (subst finite_measure_Union [symmetric], auto simp add: *)
       
    53   thus ?thesis
       
    54     unfolding cdf_def by auto
       
    55 qed
       
    56 
       
    57 lemma cdf_nondecreasing: "x \<le> y \<Longrightarrow> cdf M x \<le> cdf M y"
       
    58   unfolding cdf_def by (auto intro!: finite_measure_mono)
       
    59 
       
    60 lemma borel_UNIV: "space M = UNIV"
       
    61  by (metis in_mono sets.sets_into_space space_in_borel top_le M_super_borel)
       
    62  
       
    63 lemma cdf_nonneg: "cdf M x \<ge> 0"
       
    64   unfolding cdf_def by (rule measure_nonneg)
       
    65 
       
    66 lemma cdf_bounded: "cdf M x \<le> measure M (space M)"
       
    67   unfolding cdf_def using assms by (intro bounded_measure)
       
    68 
       
    69 lemma cdf_lim_infty:
       
    70   "((\<lambda>i. cdf M (real i)) \<longlonglongrightarrow> measure M (space M))"
       
    71 proof -
       
    72   have "(\<lambda>i. cdf M (real i)) \<longlonglongrightarrow> measure M (\<Union> i::nat. {..real i})"
       
    73     unfolding cdf_def by (rule finite_Lim_measure_incseq) (auto simp: incseq_def)
       
    74   also have "(\<Union> i::nat. {..real i}) = space M"
       
    75     by (auto simp: borel_UNIV intro: real_arch_simple)
       
    76   finally show ?thesis .
       
    77 qed
       
    78 
       
    79 lemma cdf_lim_at_top: "(cdf M \<longlongrightarrow> measure M (space M)) at_top" 
       
    80   by (rule tendsto_at_topI_sequentially_real)
       
    81      (simp_all add: mono_def cdf_nondecreasing cdf_lim_infty)
       
    82 
       
    83 lemma cdf_lim_neg_infty: "((\<lambda>i. cdf M (- real i)) \<longlonglongrightarrow> 0)" 
       
    84 proof -
       
    85   have "(\<lambda>i. cdf M (- real i)) \<longlonglongrightarrow> measure M (\<Inter> i::nat. {.. - real i })"
       
    86     unfolding cdf_def by (rule finite_Lim_measure_decseq) (auto simp: decseq_def)
       
    87   also have "(\<Inter> i::nat. {..- real i}) = {}"
       
    88     by auto (metis leD le_minus_iff reals_Archimedean2)
       
    89   finally show ?thesis
       
    90     by simp
       
    91 qed
       
    92 
       
    93 lemma cdf_lim_at_bot: "(cdf M \<longlongrightarrow> 0) at_bot"
       
    94 proof - 
       
    95   have *: "((\<lambda>x :: real. - cdf M (- x)) \<longlongrightarrow> 0) at_top"
       
    96     by (intro tendsto_at_topI_sequentially_real monoI)
       
    97        (auto simp: cdf_nondecreasing cdf_lim_neg_infty tendsto_minus_cancel_left[symmetric])
       
    98   from filterlim_compose [OF *, OF filterlim_uminus_at_top_at_bot]
       
    99   show ?thesis
       
   100     unfolding tendsto_minus_cancel_left[symmetric] by simp
       
   101 qed
       
   102 
       
   103 lemma cdf_is_right_cont: "continuous (at_right a) (cdf M)"
       
   104   unfolding continuous_within
       
   105 proof (rule tendsto_at_right_sequentially[where b="a + 1"])
       
   106   fix f :: "nat \<Rightarrow> real" and x assume f: "decseq f" "f \<longlonglongrightarrow> a"
       
   107   then have "(\<lambda>n. cdf M (f n)) \<longlonglongrightarrow> measure M (\<Inter>i. {.. f i})"
       
   108     using `decseq f` unfolding cdf_def 
       
   109     by (intro finite_Lim_measure_decseq) (auto simp: decseq_def)
       
   110   also have "(\<Inter>i. {.. f i}) = {.. a}"
       
   111     using decseq_le[OF f] by (auto intro: order_trans LIMSEQ_le_const[OF f(2)])
       
   112   finally show "(\<lambda>n. cdf M (f n)) \<longlonglongrightarrow> cdf M a"
       
   113     by (simp add: cdf_def)
       
   114 qed simp
       
   115 
       
   116 lemma cdf_at_left: "(cdf M \<longlongrightarrow> measure M {..<a}) (at_left a)"
       
   117 proof (rule tendsto_at_left_sequentially[of "a - 1"])
       
   118   fix f :: "nat \<Rightarrow> real" and x assume f: "incseq f" "f \<longlonglongrightarrow> a" "\<And>x. f x < a" "\<And>x. a - 1 < f x"
       
   119   then have "(\<lambda>n. cdf M (f n)) \<longlonglongrightarrow> measure M (\<Union>i. {.. f i})"
       
   120     using `incseq f` unfolding cdf_def 
       
   121     by (intro finite_Lim_measure_incseq) (auto simp: incseq_def)
       
   122   also have "(\<Union>i. {.. f i}) = {..<a}"
       
   123     by (auto dest!: order_tendstoD(1)[OF f(2)] eventually_happens'[OF sequentially_bot]
       
   124              intro: less_imp_le le_less_trans f(3))
       
   125   finally show "(\<lambda>n. cdf M (f n)) \<longlonglongrightarrow> measure M {..<a}"
       
   126     by (simp add: cdf_def)
       
   127 qed auto
       
   128 
       
   129 lemma isCont_cdf: "isCont (cdf M) x \<longleftrightarrow> measure M {x} = 0"
       
   130 proof -
       
   131   have "isCont (cdf M) x \<longleftrightarrow> cdf M x = measure M {..<x}"
       
   132     by (auto simp: continuous_at_split cdf_is_right_cont continuous_within[where s="{..< _}"]
       
   133                    cdf_at_left tendsto_unique[OF _ cdf_at_left])
       
   134   also have "cdf M x = measure M {..<x} \<longleftrightarrow> measure M {x} = 0"
       
   135     unfolding cdf_def ivl_disj_un(2)[symmetric]
       
   136     by (subst finite_measure_Union) auto
       
   137   finally show ?thesis .
       
   138 qed
       
   139 
       
   140 lemma countable_atoms: "countable {x. measure M {x} > 0}"
       
   141   using countable_support unfolding zero_less_measure_iff .
       
   142     
       
   143 end
       
   144 
       
   145 locale real_distribution = prob_space M for M :: "real measure" +
       
   146   assumes events_eq_borel [simp, measurable_cong]: "sets M = sets borel" and space_eq_univ [simp]: "space M = UNIV"
       
   147 begin
       
   148 
       
   149 sublocale finite_borel_measure M
       
   150   by standard auto
       
   151 
       
   152 lemma cdf_bounded_prob: "\<And>x. cdf M x \<le> 1"
       
   153   by (subst prob_space [symmetric], rule cdf_bounded)
       
   154 
       
   155 lemma cdf_lim_infty_prob: "(\<lambda>i. cdf M (real i)) \<longlonglongrightarrow> 1"
       
   156   by (subst prob_space [symmetric], rule cdf_lim_infty)
       
   157 
       
   158 lemma cdf_lim_at_top_prob: "(cdf M \<longlongrightarrow> 1) at_top" 
       
   159   by (subst prob_space [symmetric], rule cdf_lim_at_top)
       
   160 
       
   161 lemma measurable_finite_borel [simp]:
       
   162   "f \<in> borel_measurable borel \<Longrightarrow> f \<in> borel_measurable M"
       
   163   by (rule borel_measurable_subalgebra[where N=borel]) auto
       
   164 
       
   165 end
       
   166 
       
   167 lemma (in prob_space) real_distribution_distr [intro, simp]:
       
   168   "random_variable borel X \<Longrightarrow> real_distribution (distr M borel X)"
       
   169   unfolding real_distribution_def real_distribution_axioms_def by (auto intro!: prob_space_distr)
       
   170 
       
   171 subsection {* uniqueness *}
       
   172 
       
   173 lemma (in real_distribution) emeasure_Ioc:
       
   174   assumes "a \<le> b" shows "emeasure M {a <.. b} = cdf M b - cdf M a"
       
   175 proof -
       
   176   have "{a <.. b} = {..b} - {..a}"
       
   177     by auto
       
   178   with `a \<le> b` show ?thesis
       
   179     by (simp add: emeasure_eq_measure finite_measure_Diff cdf_def)
       
   180 qed
       
   181 
       
   182 lemma cdf_unique:
       
   183   fixes M1 M2
       
   184   assumes "real_distribution M1" and "real_distribution M2"
       
   185   assumes "cdf M1 = cdf M2"
       
   186   shows "M1 = M2"
       
   187 proof (rule measure_eqI_generator_eq[where \<Omega>=UNIV])
       
   188   fix X assume "X \<in> range (\<lambda>(a, b). {a<..b::real})"
       
   189   then obtain a b where Xeq: "X = {a<..b}" by auto
       
   190   then show "emeasure M1 X = emeasure M2 X"
       
   191     by (cases "a \<le> b")
       
   192        (simp_all add: assms(1,2)[THEN real_distribution.emeasure_Ioc] assms(3))
       
   193 next
       
   194   show "(\<Union>i. {- real (i::nat)<..real i}) = UNIV"
       
   195     by (rule UN_Ioc_eq_UNIV)
       
   196 qed (auto simp: real_distribution.emeasure_Ioc[OF assms(1)]
       
   197   assms(1,2)[THEN real_distribution.events_eq_borel] borel_sigma_sets_Ioc
       
   198   Int_stable_def)
       
   199 
       
   200 lemma real_distribution_interval_measure:
       
   201   fixes F :: "real \<Rightarrow> real"
       
   202   assumes nondecF : "\<And> x y. x \<le> y \<Longrightarrow> F x \<le> F y" and
       
   203     right_cont_F : "\<And>a. continuous (at_right a) F" and 
       
   204     lim_F_at_bot : "(F \<longlongrightarrow> 0) at_bot" and
       
   205     lim_F_at_top : "(F \<longlongrightarrow> 1) at_top"
       
   206   shows "real_distribution (interval_measure F)"
       
   207 proof -
       
   208   let ?F = "interval_measure F"
       
   209   interpret prob_space ?F
       
   210   proof
       
   211     have "ereal (1 - 0) = (SUP i::nat. ereal (F (real i) - F (- real i)))"
       
   212       by (intro LIMSEQ_unique[OF _ LIMSEQ_SUP] lim_ereal[THEN iffD2] tendsto_intros
       
   213          lim_F_at_bot[THEN filterlim_compose] lim_F_at_top[THEN filterlim_compose]
       
   214          lim_F_at_bot[THEN filterlim_compose] filterlim_real_sequentially
       
   215          filterlim_uminus_at_top[THEN iffD1])
       
   216          (auto simp: incseq_def intro!: diff_mono nondecF)
       
   217     also have "\<dots> = (SUP i::nat. emeasure ?F {- real i<..real i})"
       
   218       by (subst emeasure_interval_measure_Ioc) (simp_all add: nondecF right_cont_F)
       
   219     also have "\<dots> = emeasure ?F (\<Union>i::nat. {- real i<..real i})"
       
   220       by (rule SUP_emeasure_incseq) (auto simp: incseq_def)
       
   221     also have "(\<Union>i. {- real (i::nat)<..real i}) = space ?F"
       
   222       by (simp add: UN_Ioc_eq_UNIV)
       
   223     finally show "emeasure ?F (space ?F) = 1"
       
   224       by (simp add: one_ereal_def)
       
   225   qed
       
   226   show ?thesis
       
   227     proof qed simp_all
       
   228 qed
       
   229 
       
   230 lemma cdf_interval_measure:
       
   231   fixes F :: "real \<Rightarrow> real"
       
   232   assumes nondecF : "\<And> x y. x \<le> y \<Longrightarrow> F x \<le> F y" and
       
   233     right_cont_F : "\<And>a. continuous (at_right a) F" and 
       
   234     lim_F_at_bot : "(F \<longlongrightarrow> 0) at_bot" and
       
   235     lim_F_at_top : "(F \<longlongrightarrow> 1) at_top"
       
   236   shows "cdf (interval_measure F) = F"
       
   237   unfolding cdf_def
       
   238 proof (intro ext)
       
   239   interpret real_distribution "interval_measure F"
       
   240     by (rule real_distribution_interval_measure) fact+
       
   241   fix x
       
   242   have "F x - 0 = measure (interval_measure F) (\<Union>i::nat. {-real i <.. x})"
       
   243   proof (intro LIMSEQ_unique[OF _ finite_Lim_measure_incseq])
       
   244     have "(\<lambda>i. F x - F (- real i)) \<longlonglongrightarrow> F x - 0"
       
   245       by (intro tendsto_intros lim_F_at_bot[THEN filterlim_compose] filterlim_real_sequentially
       
   246                 filterlim_uminus_at_top[THEN iffD1])
       
   247     then show "(\<lambda>i. measure (interval_measure F) {- real i<..x}) \<longlonglongrightarrow> F x - 0"
       
   248       apply (rule filterlim_cong[OF refl refl, THEN iffD1, rotated])
       
   249       apply (rule eventually_sequentiallyI[where c="nat (ceiling (- x))"])
       
   250       apply (simp add: measure_interval_measure_Ioc right_cont_F nondecF)
       
   251       done
       
   252   qed (auto simp: incseq_def)
       
   253   also have "(\<Union>i::nat. {-real i <.. x}) = {..x}"
       
   254     by auto (metis minus_minus neg_less_iff_less reals_Archimedean2)
       
   255   finally show "measure (interval_measure F) {..x} = F x"
       
   256     by simp
       
   257 qed
       
   258 
       
   259 end