src/HOL/Topological_Spaces.thy
changeset 62083 7582b39f51ed
parent 62049 b0f941e207cf
child 62101 26c0a70f78a3
equal deleted inserted replaced
62082:614ef6d7a6b6 62083:7582b39f51ed
   450            intro!: INF_lower2 inf_absorb1)
   450            intro!: INF_lower2 inf_absorb1)
   451 
   451 
   452 lemma (in linorder_topology) eventually_at_right:
   452 lemma (in linorder_topology) eventually_at_right:
   453   "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)"
   453   "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)"
   454   unfolding at_right_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
   454   unfolding at_right_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
       
   455 
       
   456 lemma eventually_at_right_less: "\<forall>\<^sub>F y in at_right (x::'a::{linorder_topology, no_top}). x < y"
       
   457   using gt_ex[of x] eventually_at_right[of x] by auto
   455 
   458 
   456 lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
   459 lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
   457   unfolding filter_eq_iff eventually_at_topological by auto
   460   unfolding filter_eq_iff eventually_at_topological by auto
   458 
   461 
   459 lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
   462 lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
  1607 lemma continuous_at_imp_continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f"
  1610 lemma continuous_at_imp_continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f"
  1608   by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within)
  1611   by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within)
  1609 
  1612 
  1610 lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)"
  1613 lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)"
  1611   by (simp add: continuous_on_def continuous_at at_within_open[of _ s])
  1614   by (simp add: continuous_on_def continuous_at at_within_open[of _ s])
       
  1615 
       
  1616 lemma continuous_within_open: "a \<in> A \<Longrightarrow> open A \<Longrightarrow> continuous (at a within A) f \<longleftrightarrow> isCont f a"
       
  1617   by (simp add: at_within_open_NO_MATCH)
  1612 
  1618 
  1613 lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f"
  1619 lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f"
  1614   by (auto intro: continuous_at_imp_continuous_at_within simp: continuous_on_eq_continuous_within)
  1620   by (auto intro: continuous_at_imp_continuous_at_within simp: continuous_on_eq_continuous_within)
  1615 
  1621 
  1616 lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
  1622 lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"