doc-src/Inductive/ind-defs.bbl
changeset 3162 78fa85d44e68
child 4058 18fea4aa9625
equal deleted inserted replaced
3161:d2c6f15f38f4 3162:78fa85d44e68
       
     1 \begin{thebibliography}{10}
       
     2 
       
     3 \bibitem{abramsky90}
       
     4 Abramsky, S.,
       
     5 \newblock The lazy lambda calculus,
       
     6 \newblock In {\em Research Topics in Functional Programming}, D.~A. Turner, Ed.
       
     7   Addison-Wesley, 1977, pp.~65--116
       
     8 
       
     9 \bibitem{aczel77}
       
    10 Aczel, P.,
       
    11 \newblock An introduction to inductive definitions,
       
    12 \newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
       
    13   North-Holland, 1977, pp.~739--782
       
    14 
       
    15 \bibitem{aczel88}
       
    16 Aczel, P.,
       
    17 \newblock {\em Non-Well-Founded Sets},
       
    18 \newblock CSLI, 1988
       
    19 
       
    20 \bibitem{bm79}
       
    21 Boyer, R.~S., Moore, J.~S.,
       
    22 \newblock {\em A Computational Logic},
       
    23 \newblock Academic Press, 1979
       
    24 
       
    25 \bibitem{camilleri92}
       
    26 Camilleri, J., Melham, T.~F.,
       
    27 \newblock Reasoning with inductively defined relations in the {HOL} theorem
       
    28   prover,
       
    29 \newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992
       
    30 
       
    31 \bibitem{davey&priestley}
       
    32 Davey, B.~A., Priestley, H.~A.,
       
    33 \newblock {\em Introduction to Lattices and Order},
       
    34 \newblock Cambridge Univ. Press, 1990
       
    35 
       
    36 \bibitem{dybjer91}
       
    37 Dybjer, P.,
       
    38 \newblock Inductive sets and families in {Martin-L\"of's} type theory and their
       
    39   set-theoretic semantics,
       
    40 \newblock In {\em Logical Frameworks}, G.~Huet G.~Plotkin, Eds. Cambridge Univ.
       
    41   Press, 1991, pp.~280--306
       
    42 
       
    43 \bibitem{types94}
       
    44 Dybjer, P., Nordstr{\"om}, B., Smith, J., Eds.,
       
    45 \newblock {\em Types for Proofs and Programs: International Workshop {TYPES
       
    46   '94}},
       
    47 \newblock LNCS 996. Springer, published 1995
       
    48 
       
    49 \bibitem{IMPS}
       
    50 Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
       
    51 \newblock {IMPS}: An interactive mathematical proof system,
       
    52 \newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
       
    53 
       
    54 \bibitem{frost95}
       
    55 Frost, J.,
       
    56 \newblock A case study of co-induction in {Isabelle},
       
    57 \newblock Tech. Rep. 359, Comp. Lab., Univ. Cambridge, Feb. 1995
       
    58 
       
    59 \bibitem{gimenez-codifying}
       
    60 Gim{\'e}nez, E.,
       
    61 \newblock Codifying guarded definitions with recursive schemes,
       
    62 \newblock In Dybjer et~al. \cite{types94}, pp.~39--59
       
    63 
       
    64 \bibitem{gunter-trees}
       
    65 Gunter, E.~L.,
       
    66 \newblock A broader class of trees for recursive type definitions for {HOL},
       
    67 \newblock In {\em Higher Order Logic Theorem Proving and Its Applications: HUG
       
    68   '93\/} (Published 1994), J.~Joyce C.~Seger, Eds., LNCS 780, Springer,
       
    69   pp.~141--154
       
    70 
       
    71 \bibitem{hennessy90}
       
    72 Hennessy, M.,
       
    73 \newblock {\em The Semantics of Programming Languages: An Elementary
       
    74   Introduction Using Structural Operational Semantics},
       
    75 \newblock Wiley, 1990
       
    76 
       
    77 \bibitem{huet88}
       
    78 Huet, G.,
       
    79 \newblock Induction principles formalized in the {Calculus of Constructions},
       
    80 \newblock In {\em Programming of Future Generation Computers\/} (1988),
       
    81   K.~Fuchi M.~Nivat, Eds., Elsevier, pp.~205--216
       
    82 
       
    83 \bibitem{melham89}
       
    84 Melham, T.~F.,
       
    85 \newblock Automating recursive type definitions in higher order logic,
       
    86 \newblock In {\em Current Trends in Hardware Verification and Automated Theorem
       
    87   Proving}, G.~Birtwistle P.~A. Subrahmanyam, Eds. Springer, 1989, pp.~341--386
       
    88 
       
    89 \bibitem{milner-ind}
       
    90 Milner, R.,
       
    91 \newblock How to derive inductions in {LCF},
       
    92 \newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
       
    93 
       
    94 \bibitem{milner89}
       
    95 Milner, R.,
       
    96 \newblock {\em Communication and Concurrency},
       
    97 \newblock Prentice-Hall, 1989
       
    98 
       
    99 \bibitem{milner-coind}
       
   100 Milner, R., Tofte, M.,
       
   101 \newblock Co-induction in relational semantics,
       
   102 \newblock {\em Theoretical Comput. Sci. {\bf 87}\/} (1991), 209--220
       
   103 
       
   104 \bibitem{monahan84}
       
   105 Monahan, B.~Q.,
       
   106 \newblock {\em Data Type Proofs using Edinburgh {LCF}},
       
   107 \newblock PhD thesis, University of Edinburgh, 1984
       
   108 
       
   109 \bibitem{nipkow-CR}
       
   110 Nipkow, T.,
       
   111 \newblock More {Church-Rosser} proofs (in {Isabelle/HOL}),
       
   112 \newblock In {\em Automated Deduction --- {CADE}-13 International Conference\/}
       
   113   (1996), M.~McRobbie J.~K. Slaney, Eds., LNAI 1104, Springer, pp.~733--747
       
   114 
       
   115 \bibitem{pvs-language}
       
   116 Owre, S., Shankar, N., Rushby, J.~M.,
       
   117 \newblock {\em The {PVS} specification language},
       
   118 \newblock Computer Science Laboratory, SRI International, Menlo Park, CA, Apr.
       
   119   1993,
       
   120 \newblock Beta release
       
   121 
       
   122 \bibitem{paulin-tlca}
       
   123 Paulin-Mohring, C.,
       
   124 \newblock Inductive definitions in the system {Coq}: Rules and properties,
       
   125 \newblock In {\em Typed Lambda Calculi and Applications\/} (1993), M.~Bezem
       
   126   J.~Groote, Eds., LNCS 664, Springer, pp.~328--345
       
   127 
       
   128 \bibitem{paulson-markt}
       
   129 Paulson, L.~C.,
       
   130 \newblock Tool support for logics of programs,
       
   131 \newblock In {\em Mathematical Methods in Program Development: Summer School
       
   132   Marktoberdorf 1996}, M.~Broy, Ed., NATO ASI Series F. Springer,
       
   133 \newblock In press
       
   134 
       
   135 \bibitem{paulson87}
       
   136 Paulson, L.~C.,
       
   137 \newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
       
   138 \newblock Cambridge Univ. Press, 1987
       
   139 
       
   140 \bibitem{paulson-set-I}
       
   141 Paulson, L.~C.,
       
   142 \newblock Set theory for verification: {I}. {From} foundations to functions,
       
   143 \newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
       
   144 
       
   145 \bibitem{paulson-isa-book}
       
   146 Paulson, L.~C.,
       
   147 \newblock {\em Isabelle: A Generic Theorem Prover},
       
   148 \newblock Springer, 1994,
       
   149 \newblock LNCS 828
       
   150 
       
   151 \bibitem{paulson-set-II}
       
   152 Paulson, L.~C.,
       
   153 \newblock Set theory for verification: {II}. {Induction} and recursion,
       
   154 \newblock {\em J. Auto. Reas. {\bf 15}}, 2 (1995), 167--215
       
   155 
       
   156 \bibitem{paulson-coind}
       
   157 Paulson, L.~C.,
       
   158 \newblock Mechanizing coinduction and corecursion in higher-order logic,
       
   159 \newblock {\em J. Logic and Comput. {\bf 7}}, 2 (Mar. 1997), 175--204
       
   160 
       
   161 \bibitem{paulson-final}
       
   162 Paulson, L.~C.,
       
   163 \newblock A concrete final coalgebra theorem for {ZF} set theory,
       
   164 \newblock In Dybjer et~al. \cite{types94}, pp.~120--139
       
   165 
       
   166 \bibitem{paulson-gr}
       
   167 Paulson, L.~C., Gr\c{a}bczewski, K.,
       
   168 \newblock Mechanizing set theory: Cardinal arithmetic and the axiom of choice,
       
   169 \newblock {\em J. Auto. Reas. {\bf 17}}, 3 (Dec. 1996), 291--323
       
   170 
       
   171 \bibitem{pitts94}
       
   172 Pitts, A.~M.,
       
   173 \newblock A co-induction principle for recursively defined domains,
       
   174 \newblock {\em Theoretical Comput. Sci. {\bf 124}\/} (1994), 195--219
       
   175 
       
   176 \bibitem{rasmussen95}
       
   177 Rasmussen, O.,
       
   178 \newblock The {Church-Rosser} theorem in {Isabelle}: A proof porting
       
   179   experiment,
       
   180 \newblock Tech. Rep. 364, Computer Laboratory, University of Cambridge, May
       
   181   1995
       
   182 
       
   183 \bibitem{saaltink-fme}
       
   184 Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
       
   185 \newblock An {EVES} data abstraction example,
       
   186 \newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
       
   187   J.~C.~P. Woodcock P.~G. Larsen, Eds., LNCS 670, Springer, pp.~578--596
       
   188 
       
   189 \bibitem{slind-tfl}
       
   190 Slind, K.,
       
   191 \newblock Function definition in higher-order logic,
       
   192 \newblock In {\em Theorem Proving in Higher Order Logics: {TPHOLs} '96\/}
       
   193   (1996), J.~von Wright, J.~Grundy, J.~Harrison, Eds., LNCS 1125
       
   194 
       
   195 \bibitem{szasz93}
       
   196 Szasz, N.,
       
   197 \newblock A machine checked proof that {Ackermann's} function is not primitive
       
   198   recursive,
       
   199 \newblock In {\em Logical Environments}, G.~Huet G.~Plotkin, Eds. Cambridge
       
   200   Univ. Press, 1993, pp.~317--338
       
   201 
       
   202 \bibitem{voelker95}
       
   203 V\"olker, N.,
       
   204 \newblock On the representation of datatypes in {Isabelle/HOL},
       
   205 \newblock In {\em Proceedings of the First Isabelle Users Workshop\/} (Sept.
       
   206   1995), L.~C. Paulson, Ed., Technical Report 379, Comp. Lab., Univ. Cambridge,
       
   207   pp.~206--218
       
   208 
       
   209 \bibitem{winskel93}
       
   210 Winskel, G.,
       
   211 \newblock {\em The Formal Semantics of Programming Languages},
       
   212 \newblock MIT Press, 1993
       
   213 
       
   214 \end{thebibliography}