src/HOL/Real_Vector_Spaces.thy
changeset 51524 7cb5ac44ca9e
parent 51518 6a56b7088a6a
child 51531 f415febf4234
equal deleted inserted replaced
51523:97b5e8a1291c 51524:7cb5ac44ca9e
       
     1 (*  Title:      HOL/Real_Vector_Spaces.thy
       
     2     Author:     Brian Huffman
       
     3 *)
       
     4 
       
     5 header {* Vector Spaces and Algebras over the Reals *}
       
     6 
       
     7 theory Real_Vector_Spaces
       
     8 imports Metric_Spaces
       
     9 begin
       
    10 
       
    11 subsection {* Locale for additive functions *}
       
    12 
       
    13 locale additive =
       
    14   fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
       
    15   assumes add: "f (x + y) = f x + f y"
       
    16 begin
       
    17 
       
    18 lemma zero: "f 0 = 0"
       
    19 proof -
       
    20   have "f 0 = f (0 + 0)" by simp
       
    21   also have "\<dots> = f 0 + f 0" by (rule add)
       
    22   finally show "f 0 = 0" by simp
       
    23 qed
       
    24 
       
    25 lemma minus: "f (- x) = - f x"
       
    26 proof -
       
    27   have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
       
    28   also have "\<dots> = - f x + f x" by (simp add: zero)
       
    29   finally show "f (- x) = - f x" by (rule add_right_imp_eq)
       
    30 qed
       
    31 
       
    32 lemma diff: "f (x - y) = f x - f y"
       
    33 by (simp add: add minus diff_minus)
       
    34 
       
    35 lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
       
    36 apply (cases "finite A")
       
    37 apply (induct set: finite)
       
    38 apply (simp add: zero)
       
    39 apply (simp add: add)
       
    40 apply (simp add: zero)
       
    41 done
       
    42 
       
    43 end
       
    44 
       
    45 subsection {* Vector spaces *}
       
    46 
       
    47 locale vector_space =
       
    48   fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
       
    49   assumes scale_right_distrib [algebra_simps]:
       
    50     "scale a (x + y) = scale a x + scale a y"
       
    51   and scale_left_distrib [algebra_simps]:
       
    52     "scale (a + b) x = scale a x + scale b x"
       
    53   and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
       
    54   and scale_one [simp]: "scale 1 x = x"
       
    55 begin
       
    56 
       
    57 lemma scale_left_commute:
       
    58   "scale a (scale b x) = scale b (scale a x)"
       
    59 by (simp add: mult_commute)
       
    60 
       
    61 lemma scale_zero_left [simp]: "scale 0 x = 0"
       
    62   and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
       
    63   and scale_left_diff_distrib [algebra_simps]:
       
    64         "scale (a - b) x = scale a x - scale b x"
       
    65   and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)"
       
    66 proof -
       
    67   interpret s: additive "\<lambda>a. scale a x"
       
    68     proof qed (rule scale_left_distrib)
       
    69   show "scale 0 x = 0" by (rule s.zero)
       
    70   show "scale (- a) x = - (scale a x)" by (rule s.minus)
       
    71   show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
       
    72   show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum)
       
    73 qed
       
    74 
       
    75 lemma scale_zero_right [simp]: "scale a 0 = 0"
       
    76   and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
       
    77   and scale_right_diff_distrib [algebra_simps]:
       
    78         "scale a (x - y) = scale a x - scale a y"
       
    79   and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))"
       
    80 proof -
       
    81   interpret s: additive "\<lambda>x. scale a x"
       
    82     proof qed (rule scale_right_distrib)
       
    83   show "scale a 0 = 0" by (rule s.zero)
       
    84   show "scale a (- x) = - (scale a x)" by (rule s.minus)
       
    85   show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
       
    86   show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum)
       
    87 qed
       
    88 
       
    89 lemma scale_eq_0_iff [simp]:
       
    90   "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
       
    91 proof cases
       
    92   assume "a = 0" thus ?thesis by simp
       
    93 next
       
    94   assume anz [simp]: "a \<noteq> 0"
       
    95   { assume "scale a x = 0"
       
    96     hence "scale (inverse a) (scale a x) = 0" by simp
       
    97     hence "x = 0" by simp }
       
    98   thus ?thesis by force
       
    99 qed
       
   100 
       
   101 lemma scale_left_imp_eq:
       
   102   "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
       
   103 proof -
       
   104   assume nonzero: "a \<noteq> 0"
       
   105   assume "scale a x = scale a y"
       
   106   hence "scale a (x - y) = 0"
       
   107      by (simp add: scale_right_diff_distrib)
       
   108   hence "x - y = 0" by (simp add: nonzero)
       
   109   thus "x = y" by (simp only: right_minus_eq)
       
   110 qed
       
   111 
       
   112 lemma scale_right_imp_eq:
       
   113   "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
       
   114 proof -
       
   115   assume nonzero: "x \<noteq> 0"
       
   116   assume "scale a x = scale b x"
       
   117   hence "scale (a - b) x = 0"
       
   118      by (simp add: scale_left_diff_distrib)
       
   119   hence "a - b = 0" by (simp add: nonzero)
       
   120   thus "a = b" by (simp only: right_minus_eq)
       
   121 qed
       
   122 
       
   123 lemma scale_cancel_left [simp]:
       
   124   "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
       
   125 by (auto intro: scale_left_imp_eq)
       
   126 
       
   127 lemma scale_cancel_right [simp]:
       
   128   "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
       
   129 by (auto intro: scale_right_imp_eq)
       
   130 
       
   131 end
       
   132 
       
   133 subsection {* Real vector spaces *}
       
   134 
       
   135 class scaleR =
       
   136   fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
       
   137 begin
       
   138 
       
   139 abbreviation
       
   140   divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
       
   141 where
       
   142   "x /\<^sub>R r == scaleR (inverse r) x"
       
   143 
       
   144 end
       
   145 
       
   146 class real_vector = scaleR + ab_group_add +
       
   147   assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y"
       
   148   and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x"
       
   149   and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
       
   150   and scaleR_one: "scaleR 1 x = x"
       
   151 
       
   152 interpretation real_vector:
       
   153   vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
       
   154 apply unfold_locales
       
   155 apply (rule scaleR_add_right)
       
   156 apply (rule scaleR_add_left)
       
   157 apply (rule scaleR_scaleR)
       
   158 apply (rule scaleR_one)
       
   159 done
       
   160 
       
   161 text {* Recover original theorem names *}
       
   162 
       
   163 lemmas scaleR_left_commute = real_vector.scale_left_commute
       
   164 lemmas scaleR_zero_left = real_vector.scale_zero_left
       
   165 lemmas scaleR_minus_left = real_vector.scale_minus_left
       
   166 lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib
       
   167 lemmas scaleR_setsum_left = real_vector.scale_setsum_left
       
   168 lemmas scaleR_zero_right = real_vector.scale_zero_right
       
   169 lemmas scaleR_minus_right = real_vector.scale_minus_right
       
   170 lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib
       
   171 lemmas scaleR_setsum_right = real_vector.scale_setsum_right
       
   172 lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
       
   173 lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
       
   174 lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
       
   175 lemmas scaleR_cancel_left = real_vector.scale_cancel_left
       
   176 lemmas scaleR_cancel_right = real_vector.scale_cancel_right
       
   177 
       
   178 text {* Legacy names *}
       
   179 
       
   180 lemmas scaleR_left_distrib = scaleR_add_left
       
   181 lemmas scaleR_right_distrib = scaleR_add_right
       
   182 lemmas scaleR_left_diff_distrib = scaleR_diff_left
       
   183 lemmas scaleR_right_diff_distrib = scaleR_diff_right
       
   184 
       
   185 lemma scaleR_minus1_left [simp]:
       
   186   fixes x :: "'a::real_vector"
       
   187   shows "scaleR (-1) x = - x"
       
   188   using scaleR_minus_left [of 1 x] by simp
       
   189 
       
   190 class real_algebra = real_vector + ring +
       
   191   assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
       
   192   and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
       
   193 
       
   194 class real_algebra_1 = real_algebra + ring_1
       
   195 
       
   196 class real_div_algebra = real_algebra_1 + division_ring
       
   197 
       
   198 class real_field = real_div_algebra + field
       
   199 
       
   200 instantiation real :: real_field
       
   201 begin
       
   202 
       
   203 definition
       
   204   real_scaleR_def [simp]: "scaleR a x = a * x"
       
   205 
       
   206 instance proof
       
   207 qed (simp_all add: algebra_simps)
       
   208 
       
   209 end
       
   210 
       
   211 interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
       
   212 proof qed (rule scaleR_left_distrib)
       
   213 
       
   214 interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
       
   215 proof qed (rule scaleR_right_distrib)
       
   216 
       
   217 lemma nonzero_inverse_scaleR_distrib:
       
   218   fixes x :: "'a::real_div_algebra" shows
       
   219   "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
       
   220 by (rule inverse_unique, simp)
       
   221 
       
   222 lemma inverse_scaleR_distrib:
       
   223   fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
       
   224   shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
       
   225 apply (case_tac "a = 0", simp)
       
   226 apply (case_tac "x = 0", simp)
       
   227 apply (erule (1) nonzero_inverse_scaleR_distrib)
       
   228 done
       
   229 
       
   230 
       
   231 subsection {* Embedding of the Reals into any @{text real_algebra_1}:
       
   232 @{term of_real} *}
       
   233 
       
   234 definition
       
   235   of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
       
   236   "of_real r = scaleR r 1"
       
   237 
       
   238 lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
       
   239 by (simp add: of_real_def)
       
   240 
       
   241 lemma of_real_0 [simp]: "of_real 0 = 0"
       
   242 by (simp add: of_real_def)
       
   243 
       
   244 lemma of_real_1 [simp]: "of_real 1 = 1"
       
   245 by (simp add: of_real_def)
       
   246 
       
   247 lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
       
   248 by (simp add: of_real_def scaleR_left_distrib)
       
   249 
       
   250 lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
       
   251 by (simp add: of_real_def)
       
   252 
       
   253 lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
       
   254 by (simp add: of_real_def scaleR_left_diff_distrib)
       
   255 
       
   256 lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
       
   257 by (simp add: of_real_def mult_commute)
       
   258 
       
   259 lemma nonzero_of_real_inverse:
       
   260   "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
       
   261    inverse (of_real x :: 'a::real_div_algebra)"
       
   262 by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
       
   263 
       
   264 lemma of_real_inverse [simp]:
       
   265   "of_real (inverse x) =
       
   266    inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
       
   267 by (simp add: of_real_def inverse_scaleR_distrib)
       
   268 
       
   269 lemma nonzero_of_real_divide:
       
   270   "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
       
   271    (of_real x / of_real y :: 'a::real_field)"
       
   272 by (simp add: divide_inverse nonzero_of_real_inverse)
       
   273 
       
   274 lemma of_real_divide [simp]:
       
   275   "of_real (x / y) =
       
   276    (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
       
   277 by (simp add: divide_inverse)
       
   278 
       
   279 lemma of_real_power [simp]:
       
   280   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
       
   281 by (induct n) simp_all
       
   282 
       
   283 lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
       
   284 by (simp add: of_real_def)
       
   285 
       
   286 lemma inj_of_real:
       
   287   "inj of_real"
       
   288   by (auto intro: injI)
       
   289 
       
   290 lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
       
   291 
       
   292 lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
       
   293 proof
       
   294   fix r
       
   295   show "of_real r = id r"
       
   296     by (simp add: of_real_def)
       
   297 qed
       
   298 
       
   299 text{*Collapse nested embeddings*}
       
   300 lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
       
   301 by (induct n) auto
       
   302 
       
   303 lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
       
   304 by (cases z rule: int_diff_cases, simp)
       
   305 
       
   306 lemma of_real_numeral: "of_real (numeral w) = numeral w"
       
   307 using of_real_of_int_eq [of "numeral w"] by simp
       
   308 
       
   309 lemma of_real_neg_numeral: "of_real (neg_numeral w) = neg_numeral w"
       
   310 using of_real_of_int_eq [of "neg_numeral w"] by simp
       
   311 
       
   312 text{*Every real algebra has characteristic zero*}
       
   313 
       
   314 instance real_algebra_1 < ring_char_0
       
   315 proof
       
   316   from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp)
       
   317   then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def)
       
   318 qed
       
   319 
       
   320 instance real_field < field_char_0 ..
       
   321 
       
   322 
       
   323 subsection {* The Set of Real Numbers *}
       
   324 
       
   325 definition Reals :: "'a::real_algebra_1 set" where
       
   326   "Reals = range of_real"
       
   327 
       
   328 notation (xsymbols)
       
   329   Reals  ("\<real>")
       
   330 
       
   331 lemma Reals_of_real [simp]: "of_real r \<in> Reals"
       
   332 by (simp add: Reals_def)
       
   333 
       
   334 lemma Reals_of_int [simp]: "of_int z \<in> Reals"
       
   335 by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
       
   336 
       
   337 lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
       
   338 by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
       
   339 
       
   340 lemma Reals_numeral [simp]: "numeral w \<in> Reals"
       
   341 by (subst of_real_numeral [symmetric], rule Reals_of_real)
       
   342 
       
   343 lemma Reals_neg_numeral [simp]: "neg_numeral w \<in> Reals"
       
   344 by (subst of_real_neg_numeral [symmetric], rule Reals_of_real)
       
   345 
       
   346 lemma Reals_0 [simp]: "0 \<in> Reals"
       
   347 apply (unfold Reals_def)
       
   348 apply (rule range_eqI)
       
   349 apply (rule of_real_0 [symmetric])
       
   350 done
       
   351 
       
   352 lemma Reals_1 [simp]: "1 \<in> Reals"
       
   353 apply (unfold Reals_def)
       
   354 apply (rule range_eqI)
       
   355 apply (rule of_real_1 [symmetric])
       
   356 done
       
   357 
       
   358 lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
       
   359 apply (auto simp add: Reals_def)
       
   360 apply (rule range_eqI)
       
   361 apply (rule of_real_add [symmetric])
       
   362 done
       
   363 
       
   364 lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
       
   365 apply (auto simp add: Reals_def)
       
   366 apply (rule range_eqI)
       
   367 apply (rule of_real_minus [symmetric])
       
   368 done
       
   369 
       
   370 lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
       
   371 apply (auto simp add: Reals_def)
       
   372 apply (rule range_eqI)
       
   373 apply (rule of_real_diff [symmetric])
       
   374 done
       
   375 
       
   376 lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
       
   377 apply (auto simp add: Reals_def)
       
   378 apply (rule range_eqI)
       
   379 apply (rule of_real_mult [symmetric])
       
   380 done
       
   381 
       
   382 lemma nonzero_Reals_inverse:
       
   383   fixes a :: "'a::real_div_algebra"
       
   384   shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
       
   385 apply (auto simp add: Reals_def)
       
   386 apply (rule range_eqI)
       
   387 apply (erule nonzero_of_real_inverse [symmetric])
       
   388 done
       
   389 
       
   390 lemma Reals_inverse [simp]:
       
   391   fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
       
   392   shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
       
   393 apply (auto simp add: Reals_def)
       
   394 apply (rule range_eqI)
       
   395 apply (rule of_real_inverse [symmetric])
       
   396 done
       
   397 
       
   398 lemma nonzero_Reals_divide:
       
   399   fixes a b :: "'a::real_field"
       
   400   shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
       
   401 apply (auto simp add: Reals_def)
       
   402 apply (rule range_eqI)
       
   403 apply (erule nonzero_of_real_divide [symmetric])
       
   404 done
       
   405 
       
   406 lemma Reals_divide [simp]:
       
   407   fixes a b :: "'a::{real_field, field_inverse_zero}"
       
   408   shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
       
   409 apply (auto simp add: Reals_def)
       
   410 apply (rule range_eqI)
       
   411 apply (rule of_real_divide [symmetric])
       
   412 done
       
   413 
       
   414 lemma Reals_power [simp]:
       
   415   fixes a :: "'a::{real_algebra_1}"
       
   416   shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
       
   417 apply (auto simp add: Reals_def)
       
   418 apply (rule range_eqI)
       
   419 apply (rule of_real_power [symmetric])
       
   420 done
       
   421 
       
   422 lemma Reals_cases [cases set: Reals]:
       
   423   assumes "q \<in> \<real>"
       
   424   obtains (of_real) r where "q = of_real r"
       
   425   unfolding Reals_def
       
   426 proof -
       
   427   from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
       
   428   then obtain r where "q = of_real r" ..
       
   429   then show thesis ..
       
   430 qed
       
   431 
       
   432 lemma Reals_induct [case_names of_real, induct set: Reals]:
       
   433   "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
       
   434   by (rule Reals_cases) auto
       
   435 
       
   436 
       
   437 subsection {* Real normed vector spaces *}
       
   438 
       
   439 class norm =
       
   440   fixes norm :: "'a \<Rightarrow> real"
       
   441 
       
   442 class sgn_div_norm = scaleR + norm + sgn +
       
   443   assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
       
   444 
       
   445 class dist_norm = dist + norm + minus +
       
   446   assumes dist_norm: "dist x y = norm (x - y)"
       
   447 
       
   448 class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist +
       
   449   assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
       
   450   and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
       
   451   and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
       
   452 begin
       
   453 
       
   454 lemma norm_ge_zero [simp]: "0 \<le> norm x"
       
   455 proof -
       
   456   have "0 = norm (x + -1 *\<^sub>R x)" 
       
   457     using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one)
       
   458   also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq)
       
   459   finally show ?thesis by simp
       
   460 qed
       
   461 
       
   462 end
       
   463 
       
   464 class real_normed_algebra = real_algebra + real_normed_vector +
       
   465   assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
       
   466 
       
   467 class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
       
   468   assumes norm_one [simp]: "norm 1 = 1"
       
   469 
       
   470 class real_normed_div_algebra = real_div_algebra + real_normed_vector +
       
   471   assumes norm_mult: "norm (x * y) = norm x * norm y"
       
   472 
       
   473 class real_normed_field = real_field + real_normed_div_algebra
       
   474 
       
   475 instance real_normed_div_algebra < real_normed_algebra_1
       
   476 proof
       
   477   fix x y :: 'a
       
   478   show "norm (x * y) \<le> norm x * norm y"
       
   479     by (simp add: norm_mult)
       
   480 next
       
   481   have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
       
   482     by (rule norm_mult)
       
   483   thus "norm (1::'a) = 1" by simp
       
   484 qed
       
   485 
       
   486 lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
       
   487 by simp
       
   488 
       
   489 lemma zero_less_norm_iff [simp]:
       
   490   fixes x :: "'a::real_normed_vector"
       
   491   shows "(0 < norm x) = (x \<noteq> 0)"
       
   492 by (simp add: order_less_le)
       
   493 
       
   494 lemma norm_not_less_zero [simp]:
       
   495   fixes x :: "'a::real_normed_vector"
       
   496   shows "\<not> norm x < 0"
       
   497 by (simp add: linorder_not_less)
       
   498 
       
   499 lemma norm_le_zero_iff [simp]:
       
   500   fixes x :: "'a::real_normed_vector"
       
   501   shows "(norm x \<le> 0) = (x = 0)"
       
   502 by (simp add: order_le_less)
       
   503 
       
   504 lemma norm_minus_cancel [simp]:
       
   505   fixes x :: "'a::real_normed_vector"
       
   506   shows "norm (- x) = norm x"
       
   507 proof -
       
   508   have "norm (- x) = norm (scaleR (- 1) x)"
       
   509     by (simp only: scaleR_minus_left scaleR_one)
       
   510   also have "\<dots> = \<bar>- 1\<bar> * norm x"
       
   511     by (rule norm_scaleR)
       
   512   finally show ?thesis by simp
       
   513 qed
       
   514 
       
   515 lemma norm_minus_commute:
       
   516   fixes a b :: "'a::real_normed_vector"
       
   517   shows "norm (a - b) = norm (b - a)"
       
   518 proof -
       
   519   have "norm (- (b - a)) = norm (b - a)"
       
   520     by (rule norm_minus_cancel)
       
   521   thus ?thesis by simp
       
   522 qed
       
   523 
       
   524 lemma norm_triangle_ineq2:
       
   525   fixes a b :: "'a::real_normed_vector"
       
   526   shows "norm a - norm b \<le> norm (a - b)"
       
   527 proof -
       
   528   have "norm (a - b + b) \<le> norm (a - b) + norm b"
       
   529     by (rule norm_triangle_ineq)
       
   530   thus ?thesis by simp
       
   531 qed
       
   532 
       
   533 lemma norm_triangle_ineq3:
       
   534   fixes a b :: "'a::real_normed_vector"
       
   535   shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
       
   536 apply (subst abs_le_iff)
       
   537 apply auto
       
   538 apply (rule norm_triangle_ineq2)
       
   539 apply (subst norm_minus_commute)
       
   540 apply (rule norm_triangle_ineq2)
       
   541 done
       
   542 
       
   543 lemma norm_triangle_ineq4:
       
   544   fixes a b :: "'a::real_normed_vector"
       
   545   shows "norm (a - b) \<le> norm a + norm b"
       
   546 proof -
       
   547   have "norm (a + - b) \<le> norm a + norm (- b)"
       
   548     by (rule norm_triangle_ineq)
       
   549   thus ?thesis
       
   550     by (simp only: diff_minus norm_minus_cancel)
       
   551 qed
       
   552 
       
   553 lemma norm_diff_ineq:
       
   554   fixes a b :: "'a::real_normed_vector"
       
   555   shows "norm a - norm b \<le> norm (a + b)"
       
   556 proof -
       
   557   have "norm a - norm (- b) \<le> norm (a - - b)"
       
   558     by (rule norm_triangle_ineq2)
       
   559   thus ?thesis by simp
       
   560 qed
       
   561 
       
   562 lemma norm_diff_triangle_ineq:
       
   563   fixes a b c d :: "'a::real_normed_vector"
       
   564   shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
       
   565 proof -
       
   566   have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
       
   567     by (simp add: diff_minus add_ac)
       
   568   also have "\<dots> \<le> norm (a - c) + norm (b - d)"
       
   569     by (rule norm_triangle_ineq)
       
   570   finally show ?thesis .
       
   571 qed
       
   572 
       
   573 lemma abs_norm_cancel [simp]:
       
   574   fixes a :: "'a::real_normed_vector"
       
   575   shows "\<bar>norm a\<bar> = norm a"
       
   576 by (rule abs_of_nonneg [OF norm_ge_zero])
       
   577 
       
   578 lemma norm_add_less:
       
   579   fixes x y :: "'a::real_normed_vector"
       
   580   shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
       
   581 by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
       
   582 
       
   583 lemma norm_mult_less:
       
   584   fixes x y :: "'a::real_normed_algebra"
       
   585   shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
       
   586 apply (rule order_le_less_trans [OF norm_mult_ineq])
       
   587 apply (simp add: mult_strict_mono')
       
   588 done
       
   589 
       
   590 lemma norm_of_real [simp]:
       
   591   "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
       
   592 unfolding of_real_def by simp
       
   593 
       
   594 lemma norm_numeral [simp]:
       
   595   "norm (numeral w::'a::real_normed_algebra_1) = numeral w"
       
   596 by (subst of_real_numeral [symmetric], subst norm_of_real, simp)
       
   597 
       
   598 lemma norm_neg_numeral [simp]:
       
   599   "norm (neg_numeral w::'a::real_normed_algebra_1) = numeral w"
       
   600 by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp)
       
   601 
       
   602 lemma norm_of_int [simp]:
       
   603   "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
       
   604 by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
       
   605 
       
   606 lemma norm_of_nat [simp]:
       
   607   "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
       
   608 apply (subst of_real_of_nat_eq [symmetric])
       
   609 apply (subst norm_of_real, simp)
       
   610 done
       
   611 
       
   612 lemma nonzero_norm_inverse:
       
   613   fixes a :: "'a::real_normed_div_algebra"
       
   614   shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
       
   615 apply (rule inverse_unique [symmetric])
       
   616 apply (simp add: norm_mult [symmetric])
       
   617 done
       
   618 
       
   619 lemma norm_inverse:
       
   620   fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
       
   621   shows "norm (inverse a) = inverse (norm a)"
       
   622 apply (case_tac "a = 0", simp)
       
   623 apply (erule nonzero_norm_inverse)
       
   624 done
       
   625 
       
   626 lemma nonzero_norm_divide:
       
   627   fixes a b :: "'a::real_normed_field"
       
   628   shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
       
   629 by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
       
   630 
       
   631 lemma norm_divide:
       
   632   fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
       
   633   shows "norm (a / b) = norm a / norm b"
       
   634 by (simp add: divide_inverse norm_mult norm_inverse)
       
   635 
       
   636 lemma norm_power_ineq:
       
   637   fixes x :: "'a::{real_normed_algebra_1}"
       
   638   shows "norm (x ^ n) \<le> norm x ^ n"
       
   639 proof (induct n)
       
   640   case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
       
   641 next
       
   642   case (Suc n)
       
   643   have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
       
   644     by (rule norm_mult_ineq)
       
   645   also from Suc have "\<dots> \<le> norm x * norm x ^ n"
       
   646     using norm_ge_zero by (rule mult_left_mono)
       
   647   finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
       
   648     by simp
       
   649 qed
       
   650 
       
   651 lemma norm_power:
       
   652   fixes x :: "'a::{real_normed_div_algebra}"
       
   653   shows "norm (x ^ n) = norm x ^ n"
       
   654 by (induct n) (simp_all add: norm_mult)
       
   655 
       
   656 text {* Every normed vector space is a metric space. *}
       
   657 
       
   658 instance real_normed_vector < metric_space
       
   659 proof
       
   660   fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y"
       
   661     unfolding dist_norm by simp
       
   662 next
       
   663   fix x y z :: 'a show "dist x y \<le> dist x z + dist y z"
       
   664     unfolding dist_norm
       
   665     using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
       
   666 qed
       
   667 
       
   668 subsection {* Class instances for real numbers *}
       
   669 
       
   670 instantiation real :: real_normed_field
       
   671 begin
       
   672 
       
   673 definition real_norm_def [simp]:
       
   674   "norm r = \<bar>r\<bar>"
       
   675 
       
   676 instance
       
   677 apply (intro_classes, unfold real_norm_def real_scaleR_def)
       
   678 apply (rule dist_real_def)
       
   679 apply (simp add: sgn_real_def)
       
   680 apply (rule abs_eq_0)
       
   681 apply (rule abs_triangle_ineq)
       
   682 apply (rule abs_mult)
       
   683 apply (rule abs_mult)
       
   684 done
       
   685 
       
   686 end
       
   687 
       
   688 instance real :: linear_continuum_topology ..
       
   689 
       
   690 subsection {* Extra type constraints *}
       
   691 
       
   692 text {* Only allow @{term "open"} in class @{text topological_space}. *}
       
   693 
       
   694 setup {* Sign.add_const_constraint
       
   695   (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
       
   696 
       
   697 text {* Only allow @{term dist} in class @{text metric_space}. *}
       
   698 
       
   699 setup {* Sign.add_const_constraint
       
   700   (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
       
   701 
       
   702 text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
       
   703 
       
   704 setup {* Sign.add_const_constraint
       
   705   (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
       
   706 
       
   707 subsection {* Sign function *}
       
   708 
       
   709 lemma norm_sgn:
       
   710   "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
       
   711 by (simp add: sgn_div_norm)
       
   712 
       
   713 lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
       
   714 by (simp add: sgn_div_norm)
       
   715 
       
   716 lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
       
   717 by (simp add: sgn_div_norm)
       
   718 
       
   719 lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
       
   720 by (simp add: sgn_div_norm)
       
   721 
       
   722 lemma sgn_scaleR:
       
   723   "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
       
   724 by (simp add: sgn_div_norm mult_ac)
       
   725 
       
   726 lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
       
   727 by (simp add: sgn_div_norm)
       
   728 
       
   729 lemma sgn_of_real:
       
   730   "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
       
   731 unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
       
   732 
       
   733 lemma sgn_mult:
       
   734   fixes x y :: "'a::real_normed_div_algebra"
       
   735   shows "sgn (x * y) = sgn x * sgn y"
       
   736 by (simp add: sgn_div_norm norm_mult mult_commute)
       
   737 
       
   738 lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
       
   739 by (simp add: sgn_div_norm divide_inverse)
       
   740 
       
   741 lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
       
   742 unfolding real_sgn_eq by simp
       
   743 
       
   744 lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
       
   745 unfolding real_sgn_eq by simp
       
   746 
       
   747 lemma norm_conv_dist: "norm x = dist x 0"
       
   748   unfolding dist_norm by simp
       
   749 
       
   750 subsection {* Bounded Linear and Bilinear Operators *}
       
   751 
       
   752 locale bounded_linear = additive f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" +
       
   753   assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
       
   754   assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
       
   755 begin
       
   756 
       
   757 lemma pos_bounded:
       
   758   "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
       
   759 proof -
       
   760   obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
       
   761     using bounded by fast
       
   762   show ?thesis
       
   763   proof (intro exI impI conjI allI)
       
   764     show "0 < max 1 K"
       
   765       by (rule order_less_le_trans [OF zero_less_one le_maxI1])
       
   766   next
       
   767     fix x
       
   768     have "norm (f x) \<le> norm x * K" using K .
       
   769     also have "\<dots> \<le> norm x * max 1 K"
       
   770       by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
       
   771     finally show "norm (f x) \<le> norm x * max 1 K" .
       
   772   qed
       
   773 qed
       
   774 
       
   775 lemma nonneg_bounded:
       
   776   "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
       
   777 proof -
       
   778   from pos_bounded
       
   779   show ?thesis by (auto intro: order_less_imp_le)
       
   780 qed
       
   781 
       
   782 end
       
   783 
       
   784 lemma bounded_linear_intro:
       
   785   assumes "\<And>x y. f (x + y) = f x + f y"
       
   786   assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)"
       
   787   assumes "\<And>x. norm (f x) \<le> norm x * K"
       
   788   shows "bounded_linear f"
       
   789   by default (fast intro: assms)+
       
   790 
       
   791 locale bounded_bilinear =
       
   792   fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
       
   793                  \<Rightarrow> 'c::real_normed_vector"
       
   794     (infixl "**" 70)
       
   795   assumes add_left: "prod (a + a') b = prod a b + prod a' b"
       
   796   assumes add_right: "prod a (b + b') = prod a b + prod a b'"
       
   797   assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
       
   798   assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
       
   799   assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
       
   800 begin
       
   801 
       
   802 lemma pos_bounded:
       
   803   "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
       
   804 apply (cut_tac bounded, erule exE)
       
   805 apply (rule_tac x="max 1 K" in exI, safe)
       
   806 apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
       
   807 apply (drule spec, drule spec, erule order_trans)
       
   808 apply (rule mult_left_mono [OF le_maxI2])
       
   809 apply (intro mult_nonneg_nonneg norm_ge_zero)
       
   810 done
       
   811 
       
   812 lemma nonneg_bounded:
       
   813   "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
       
   814 proof -
       
   815   from pos_bounded
       
   816   show ?thesis by (auto intro: order_less_imp_le)
       
   817 qed
       
   818 
       
   819 lemma additive_right: "additive (\<lambda>b. prod a b)"
       
   820 by (rule additive.intro, rule add_right)
       
   821 
       
   822 lemma additive_left: "additive (\<lambda>a. prod a b)"
       
   823 by (rule additive.intro, rule add_left)
       
   824 
       
   825 lemma zero_left: "prod 0 b = 0"
       
   826 by (rule additive.zero [OF additive_left])
       
   827 
       
   828 lemma zero_right: "prod a 0 = 0"
       
   829 by (rule additive.zero [OF additive_right])
       
   830 
       
   831 lemma minus_left: "prod (- a) b = - prod a b"
       
   832 by (rule additive.minus [OF additive_left])
       
   833 
       
   834 lemma minus_right: "prod a (- b) = - prod a b"
       
   835 by (rule additive.minus [OF additive_right])
       
   836 
       
   837 lemma diff_left:
       
   838   "prod (a - a') b = prod a b - prod a' b"
       
   839 by (rule additive.diff [OF additive_left])
       
   840 
       
   841 lemma diff_right:
       
   842   "prod a (b - b') = prod a b - prod a b'"
       
   843 by (rule additive.diff [OF additive_right])
       
   844 
       
   845 lemma bounded_linear_left:
       
   846   "bounded_linear (\<lambda>a. a ** b)"
       
   847 apply (cut_tac bounded, safe)
       
   848 apply (rule_tac K="norm b * K" in bounded_linear_intro)
       
   849 apply (rule add_left)
       
   850 apply (rule scaleR_left)
       
   851 apply (simp add: mult_ac)
       
   852 done
       
   853 
       
   854 lemma bounded_linear_right:
       
   855   "bounded_linear (\<lambda>b. a ** b)"
       
   856 apply (cut_tac bounded, safe)
       
   857 apply (rule_tac K="norm a * K" in bounded_linear_intro)
       
   858 apply (rule add_right)
       
   859 apply (rule scaleR_right)
       
   860 apply (simp add: mult_ac)
       
   861 done
       
   862 
       
   863 lemma prod_diff_prod:
       
   864   "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
       
   865 by (simp add: diff_left diff_right)
       
   866 
       
   867 end
       
   868 
       
   869 lemma bounded_bilinear_mult:
       
   870   "bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)"
       
   871 apply (rule bounded_bilinear.intro)
       
   872 apply (rule distrib_right)
       
   873 apply (rule distrib_left)
       
   874 apply (rule mult_scaleR_left)
       
   875 apply (rule mult_scaleR_right)
       
   876 apply (rule_tac x="1" in exI)
       
   877 apply (simp add: norm_mult_ineq)
       
   878 done
       
   879 
       
   880 lemma bounded_linear_mult_left:
       
   881   "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)"
       
   882   using bounded_bilinear_mult
       
   883   by (rule bounded_bilinear.bounded_linear_left)
       
   884 
       
   885 lemma bounded_linear_mult_right:
       
   886   "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)"
       
   887   using bounded_bilinear_mult
       
   888   by (rule bounded_bilinear.bounded_linear_right)
       
   889 
       
   890 lemma bounded_linear_divide:
       
   891   "bounded_linear (\<lambda>x::'a::real_normed_field. x / y)"
       
   892   unfolding divide_inverse by (rule bounded_linear_mult_left)
       
   893 
       
   894 lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR"
       
   895 apply (rule bounded_bilinear.intro)
       
   896 apply (rule scaleR_left_distrib)
       
   897 apply (rule scaleR_right_distrib)
       
   898 apply simp
       
   899 apply (rule scaleR_left_commute)
       
   900 apply (rule_tac x="1" in exI, simp)
       
   901 done
       
   902 
       
   903 lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)"
       
   904   using bounded_bilinear_scaleR
       
   905   by (rule bounded_bilinear.bounded_linear_left)
       
   906 
       
   907 lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)"
       
   908   using bounded_bilinear_scaleR
       
   909   by (rule bounded_bilinear.bounded_linear_right)
       
   910 
       
   911 lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)"
       
   912   unfolding of_real_def by (rule bounded_linear_scaleR_left)
       
   913 
       
   914 instance real_normed_algebra_1 \<subseteq> perfect_space
       
   915 proof
       
   916   fix x::'a
       
   917   show "\<not> open {x}"
       
   918     unfolding open_dist dist_norm
       
   919     by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp)
       
   920 qed
       
   921 
       
   922 end