src/HOL/Library/Product_Order.thy
changeset 51115 7dbd6832a689
parent 50573 765c22baa1c9
child 51542 738598beeb26
equal deleted inserted replaced
51114:3e913a575dc6 51115:7dbd6832a689
       
     1 (*  Title:      HOL/Library/Product_Order.thy
       
     2     Author:     Brian Huffman
       
     3 *)
       
     4 
       
     5 header {* Pointwise order on product types *}
       
     6 
       
     7 theory Product_Order
       
     8 imports "~~/src/HOL/Library/Product_plus"
       
     9 begin
       
    10 
       
    11 subsection {* Pointwise ordering *}
       
    12 
       
    13 instantiation prod :: (ord, ord) ord
       
    14 begin
       
    15 
       
    16 definition
       
    17   "x \<le> y \<longleftrightarrow> fst x \<le> fst y \<and> snd x \<le> snd y"
       
    18 
       
    19 definition
       
    20   "(x::'a \<times> 'b) < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
       
    21 
       
    22 instance ..
       
    23 
       
    24 end
       
    25 
       
    26 lemma fst_mono: "x \<le> y \<Longrightarrow> fst x \<le> fst y"
       
    27   unfolding less_eq_prod_def by simp
       
    28 
       
    29 lemma snd_mono: "x \<le> y \<Longrightarrow> snd x \<le> snd y"
       
    30   unfolding less_eq_prod_def by simp
       
    31 
       
    32 lemma Pair_mono: "x \<le> x' \<Longrightarrow> y \<le> y' \<Longrightarrow> (x, y) \<le> (x', y')"
       
    33   unfolding less_eq_prod_def by simp
       
    34 
       
    35 lemma Pair_le [simp]: "(a, b) \<le> (c, d) \<longleftrightarrow> a \<le> c \<and> b \<le> d"
       
    36   unfolding less_eq_prod_def by simp
       
    37 
       
    38 instance prod :: (preorder, preorder) preorder
       
    39 proof
       
    40   fix x y z :: "'a \<times> 'b"
       
    41   show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
       
    42     by (rule less_prod_def)
       
    43   show "x \<le> x"
       
    44     unfolding less_eq_prod_def
       
    45     by fast
       
    46   assume "x \<le> y" and "y \<le> z" thus "x \<le> z"
       
    47     unfolding less_eq_prod_def
       
    48     by (fast elim: order_trans)
       
    49 qed
       
    50 
       
    51 instance prod :: (order, order) order
       
    52   by default auto
       
    53 
       
    54 
       
    55 subsection {* Binary infimum and supremum *}
       
    56 
       
    57 instantiation prod :: (semilattice_inf, semilattice_inf) semilattice_inf
       
    58 begin
       
    59 
       
    60 definition
       
    61   "inf x y = (inf (fst x) (fst y), inf (snd x) (snd y))"
       
    62 
       
    63 lemma inf_Pair_Pair [simp]: "inf (a, b) (c, d) = (inf a c, inf b d)"
       
    64   unfolding inf_prod_def by simp
       
    65 
       
    66 lemma fst_inf [simp]: "fst (inf x y) = inf (fst x) (fst y)"
       
    67   unfolding inf_prod_def by simp
       
    68 
       
    69 lemma snd_inf [simp]: "snd (inf x y) = inf (snd x) (snd y)"
       
    70   unfolding inf_prod_def by simp
       
    71 
       
    72 instance
       
    73   by default auto
       
    74 
       
    75 end
       
    76 
       
    77 instantiation prod :: (semilattice_sup, semilattice_sup) semilattice_sup
       
    78 begin
       
    79 
       
    80 definition
       
    81   "sup x y = (sup (fst x) (fst y), sup (snd x) (snd y))"
       
    82 
       
    83 lemma sup_Pair_Pair [simp]: "sup (a, b) (c, d) = (sup a c, sup b d)"
       
    84   unfolding sup_prod_def by simp
       
    85 
       
    86 lemma fst_sup [simp]: "fst (sup x y) = sup (fst x) (fst y)"
       
    87   unfolding sup_prod_def by simp
       
    88 
       
    89 lemma snd_sup [simp]: "snd (sup x y) = sup (snd x) (snd y)"
       
    90   unfolding sup_prod_def by simp
       
    91 
       
    92 instance
       
    93   by default auto
       
    94 
       
    95 end
       
    96 
       
    97 instance prod :: (lattice, lattice) lattice ..
       
    98 
       
    99 instance prod :: (distrib_lattice, distrib_lattice) distrib_lattice
       
   100   by default (auto simp add: sup_inf_distrib1)
       
   101 
       
   102 
       
   103 subsection {* Top and bottom elements *}
       
   104 
       
   105 instantiation prod :: (top, top) top
       
   106 begin
       
   107 
       
   108 definition
       
   109   "top = (top, top)"
       
   110 
       
   111 lemma fst_top [simp]: "fst top = top"
       
   112   unfolding top_prod_def by simp
       
   113 
       
   114 lemma snd_top [simp]: "snd top = top"
       
   115   unfolding top_prod_def by simp
       
   116 
       
   117 lemma Pair_top_top: "(top, top) = top"
       
   118   unfolding top_prod_def by simp
       
   119 
       
   120 instance
       
   121   by default (auto simp add: top_prod_def)
       
   122 
       
   123 end
       
   124 
       
   125 instantiation prod :: (bot, bot) bot
       
   126 begin
       
   127 
       
   128 definition
       
   129   "bot = (bot, bot)"
       
   130 
       
   131 lemma fst_bot [simp]: "fst bot = bot"
       
   132   unfolding bot_prod_def by simp
       
   133 
       
   134 lemma snd_bot [simp]: "snd bot = bot"
       
   135   unfolding bot_prod_def by simp
       
   136 
       
   137 lemma Pair_bot_bot: "(bot, bot) = bot"
       
   138   unfolding bot_prod_def by simp
       
   139 
       
   140 instance
       
   141   by default (auto simp add: bot_prod_def)
       
   142 
       
   143 end
       
   144 
       
   145 instance prod :: (bounded_lattice, bounded_lattice) bounded_lattice ..
       
   146 
       
   147 instance prod :: (boolean_algebra, boolean_algebra) boolean_algebra
       
   148   by default (auto simp add: prod_eqI inf_compl_bot sup_compl_top diff_eq)
       
   149 
       
   150 
       
   151 subsection {* Complete lattice operations *}
       
   152 
       
   153 instantiation prod :: (complete_lattice, complete_lattice) complete_lattice
       
   154 begin
       
   155 
       
   156 definition
       
   157   "Sup A = (SUP x:A. fst x, SUP x:A. snd x)"
       
   158 
       
   159 definition
       
   160   "Inf A = (INF x:A. fst x, INF x:A. snd x)"
       
   161 
       
   162 instance
       
   163   by default (simp_all add: less_eq_prod_def Inf_prod_def Sup_prod_def
       
   164     INF_lower SUP_upper le_INF_iff SUP_le_iff)
       
   165 
       
   166 end
       
   167 
       
   168 lemma fst_Sup: "fst (Sup A) = (SUP x:A. fst x)"
       
   169   unfolding Sup_prod_def by simp
       
   170 
       
   171 lemma snd_Sup: "snd (Sup A) = (SUP x:A. snd x)"
       
   172   unfolding Sup_prod_def by simp
       
   173 
       
   174 lemma fst_Inf: "fst (Inf A) = (INF x:A. fst x)"
       
   175   unfolding Inf_prod_def by simp
       
   176 
       
   177 lemma snd_Inf: "snd (Inf A) = (INF x:A. snd x)"
       
   178   unfolding Inf_prod_def by simp
       
   179 
       
   180 lemma fst_SUP: "fst (SUP x:A. f x) = (SUP x:A. fst (f x))"
       
   181   by (simp add: SUP_def fst_Sup image_image)
       
   182 
       
   183 lemma snd_SUP: "snd (SUP x:A. f x) = (SUP x:A. snd (f x))"
       
   184   by (simp add: SUP_def snd_Sup image_image)
       
   185 
       
   186 lemma fst_INF: "fst (INF x:A. f x) = (INF x:A. fst (f x))"
       
   187   by (simp add: INF_def fst_Inf image_image)
       
   188 
       
   189 lemma snd_INF: "snd (INF x:A. f x) = (INF x:A. snd (f x))"
       
   190   by (simp add: INF_def snd_Inf image_image)
       
   191 
       
   192 lemma SUP_Pair: "(SUP x:A. (f x, g x)) = (SUP x:A. f x, SUP x:A. g x)"
       
   193   by (simp add: SUP_def Sup_prod_def image_image)
       
   194 
       
   195 lemma INF_Pair: "(INF x:A. (f x, g x)) = (INF x:A. f x, INF x:A. g x)"
       
   196   by (simp add: INF_def Inf_prod_def image_image)
       
   197 
       
   198 
       
   199 text {* Alternative formulations for set infima and suprema over the product
       
   200 of two complete lattices: *}
       
   201 
       
   202 lemma Inf_prod_alt_def: "Inf A = (Inf (fst ` A), Inf (snd ` A))"
       
   203 by (auto simp: Inf_prod_def INF_def)
       
   204 
       
   205 lemma Sup_prod_alt_def: "Sup A = (Sup (fst ` A), Sup (snd ` A))"
       
   206 by (auto simp: Sup_prod_def SUP_def)
       
   207 
       
   208 lemma INFI_prod_alt_def: "INFI A f = (INFI A (fst o f), INFI A (snd o f))"
       
   209 by (auto simp: INF_def Inf_prod_def image_compose)
       
   210 
       
   211 lemma SUPR_prod_alt_def: "SUPR A f = (SUPR A (fst o f), SUPR A (snd o f))"
       
   212 by (auto simp: SUP_def Sup_prod_def image_compose)
       
   213 
       
   214 lemma INF_prod_alt_def:
       
   215   "(INF x:A. f x) = (INF x:A. fst (f x), INF x:A. snd (f x))"
       
   216 by (metis fst_INF snd_INF surjective_pairing)
       
   217 
       
   218 lemma SUP_prod_alt_def:
       
   219   "(SUP x:A. f x) = (SUP x:A. fst (f x), SUP x:A. snd (f x))"
       
   220 by (metis fst_SUP snd_SUP surjective_pairing)
       
   221 
       
   222 
       
   223 subsection {* Complete distributive lattices *}
       
   224 
       
   225 (* Contribution: Alessandro Coglio *)
       
   226 
       
   227 instance prod ::
       
   228   (complete_distrib_lattice, complete_distrib_lattice) complete_distrib_lattice
       
   229 proof
       
   230   case goal1 thus ?case
       
   231     by (auto simp: sup_prod_def Inf_prod_def INF_prod_alt_def sup_Inf sup_INF)
       
   232 next
       
   233   case goal2 thus ?case
       
   234     by (auto simp: inf_prod_def Sup_prod_def SUP_prod_alt_def inf_Sup inf_SUP)
       
   235 qed
       
   236 
       
   237 end
       
   238