src/CCL/lfp.ML
changeset 13894 8018173a7979
parent 13893 19849d258890
child 13895 b6105462ccd3
equal deleted inserted replaced
13893:19849d258890 13894:8018173a7979
     1 (*  Title: 	CCL/lfp
       
     2     ID:         $Id$
       
     3 
       
     4 Modified version of
       
     5     Title: 	HOL/lfp.ML
       
     6     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     7     Copyright   1992  University of Cambridge
       
     8 
       
     9 For lfp.thy.  The Knaster-Tarski Theorem
       
    10 *)
       
    11 
       
    12 open Lfp;
       
    13 
       
    14 (*** Proof of Knaster-Tarski Theorem ***)
       
    15 
       
    16 (* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
       
    17 
       
    18 val prems = goalw Lfp.thy [lfp_def] "[| f(A) <= A |] ==> lfp(f) <= A";
       
    19 by (rtac (CollectI RS Inter_lower) 1);
       
    20 by (resolve_tac prems 1);
       
    21 val lfp_lowerbound = result();
       
    22 
       
    23 val prems = goalw Lfp.thy [lfp_def]
       
    24     "[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
       
    25 by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
       
    26 by (etac CollectD 1);
       
    27 val lfp_greatest = result();
       
    28 
       
    29 val [mono] = goal Lfp.thy "mono(f) ==> f(lfp(f)) <= lfp(f)";
       
    30 by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
       
    31 	    rtac (mono RS monoD), rtac lfp_lowerbound, atac, atac]);
       
    32 val lfp_lemma2 = result();
       
    33 
       
    34 val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) <= f(lfp(f))";
       
    35 by (EVERY1 [rtac lfp_lowerbound, rtac (mono RS monoD), 
       
    36 	    rtac lfp_lemma2, rtac mono]);
       
    37 val lfp_lemma3 = result();
       
    38 
       
    39 val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) = f(lfp(f))";
       
    40 by (REPEAT (resolve_tac [equalityI,lfp_lemma2,lfp_lemma3,mono] 1));
       
    41 val lfp_Tarski = result();
       
    42 
       
    43 
       
    44 (*** General induction rule for least fixed points ***)
       
    45 
       
    46 val [lfp,mono,indhyp] = goal Lfp.thy
       
    47     "[| a: lfp(f);  mono(f);  				\
       
    48 \       !!x. [| x: f(lfp(f) Int {x.P(x)}) |] ==> P(x) 	\
       
    49 \    |] ==> P(a)";
       
    50 by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
       
    51 by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
       
    52 by (EVERY1 [rtac Int_greatest, rtac subset_trans, 
       
    53 	    rtac (Int_lower1 RS (mono RS monoD)),
       
    54 	    rtac (mono RS lfp_lemma2),
       
    55 	    rtac (CollectI RS subsetI), rtac indhyp, atac]);
       
    56 val induct = result();
       
    57 
       
    58 (** Definition forms of lfp_Tarski and induct, to control unfolding **)
       
    59 
       
    60 val [rew,mono] = goal Lfp.thy "[| h==lfp(f);  mono(f) |] ==> h = f(h)";
       
    61 by (rewtac rew);
       
    62 by (rtac (mono RS lfp_Tarski) 1);
       
    63 val def_lfp_Tarski = result();
       
    64 
       
    65 val rew::prems = goal Lfp.thy
       
    66     "[| A == lfp(f);  a:A;  mono(f);   			\
       
    67 \       !!x. [| x: f(A Int {x.P(x)}) |] ==> P(x) 	\
       
    68 \    |] ==> P(a)";
       
    69 by (EVERY1 [rtac induct,	(*backtracking to force correct induction*)
       
    70 	    REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
       
    71 val def_induct = result();
       
    72 
       
    73 (*Monotonicity of lfp!*)
       
    74 val prems = goal Lfp.thy
       
    75     "[| mono(g);  !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
       
    76 by (rtac lfp_lowerbound 1);
       
    77 by (rtac subset_trans 1);
       
    78 by (resolve_tac prems 1);
       
    79 by (rtac lfp_lemma2 1);
       
    80 by (resolve_tac prems 1);
       
    81 val lfp_mono = result();
       
    82