src/HOL/Isar_examples/W_correct.thy
changeset 8103 86f94a8116a9
parent 7982 d534b897ce39
child 8109 aca11f954993
equal deleted inserted replaced
8102:424f6e663977 8103:86f94a8116a9
    45 proof -;
    45 proof -;
    46   assume "a |- e :: t";
    46   assume "a |- e :: t";
    47   thus ?thesis (is "?P a e t");
    47   thus ?thesis (is "?P a e t");
    48   proof (rule has_type.induct);     (* FIXME induct method *)
    48   proof (rule has_type.induct);     (* FIXME induct method *)
    49     fix a n;
    49     fix a n;
    50     assume "n < length a";
    50     assume "n < length (a::typ list)";
    51     hence "n < length (map ($ s) a)"; by simp;
    51     hence "n < length (map ($ s) a)"; by simp;
    52     hence "map ($ s) a |- Var n :: map ($ s) a ! n";
    52     hence "map ($ s) a |- Var n :: map ($ s) a ! n";
    53       by (rule has_type.VarI);
    53       by (rule has_type.VarI);
    54     also; have "map ($ s) a ! n = $ s (a ! n)";
    54     also; have "map ($ s) a ! n = $ s (a ! n)";
    55       by (rule nth_map);
    55       by (rule nth_map);
    56     also; have "map ($ s) a = $ s a";
    56     also; have "map ($ s) a = $ s a";
    57       by (simp only: app_subst_list);   (* FIXME unfold fails!? *)
    57       by (simp only: app_subst_list);
    58     finally; show "?P a (Var n) (a ! n)"; .;
    58     finally; show "?P a (Var n) (a ! n)"; .;
    59   next;
    59   next;
    60     fix a e t1 t2;
    60     fix a e t1 t2;
    61     assume "?P (t1 # a) e t2";
    61     assume "?P (t1 # a) e t2";
    62     hence "$ s t1 # map ($ s) a |- e :: $ s t2";
    62     hence "$ s t1 # map ($ s) a |- e :: $ s t2";
   110     fix e; assume hyp: "?P e";
   110     fix e; assume hyp: "?P e";
   111     show "?P (Abs e)";
   111     show "?P (Abs e)";
   112     proof (intro allI impI);
   112     proof (intro allI impI);
   113       fix a s t m n;
   113       fix a s t m n;
   114       assume "Ok (s, t, m) = W (Abs e) a n";
   114       assume "Ok (s, t, m) = W (Abs e) a n";
   115       hence "EX t'. t = s n -> t' &
   115       thus "$ s a |- Abs e :: t";
   116           Ok (s, t', m) = W e (TVar n # a) (Suc n)";
   116 	obtain t' in "t = s n -> t'" "Ok (s, t', m) = W e (TVar n # a) (Suc n)";
   117         by (rule rev_mp) simp;
   117 	  by (rule rev_mp) simp;
   118       with hyp; show "$ s a |- Abs e :: t";
   118 	with hyp; show ?thesis; by (force intro: has_type.AbsI);
   119         by (force intro: has_type.AbsI);
   119       qed;
   120     qed;
   120     qed;
   121   next;
   121   next;
   122     fix e1 e2; assume hyp1: "?P e1" and hyp2: "?P e2";
   122     fix e1 e2; assume hyp1: "?P e1" and hyp2: "?P e2";
   123     show "?P (App e1 e2)";
   123     show "?P (App e1 e2)";
   124     proof (intro allI impI);
   124     proof (intro allI impI);
   125       fix a s t m n; assume "Ok (s, t, m) = W (App e1 e2) a n";
   125       fix a s t m n; assume "Ok (s, t, m) = W (App e1 e2) a n";
   126       hence "EX s1 t1 n1 s2 t2 n2 u.
       
   127           s = $ u o $ s2 o s1 & t = u n2 &
       
   128           mgu ($ s2 t1) (t2 -> TVar n2) = Ok u &
       
   129              W e2 ($ s1 a) n1 = Ok (s2, t2, n2) &
       
   130              W e1 a n = Ok (s1, t1, n1)";
       
   131         by (rule rev_mp) (simp, force); (* FIXME force fails !??*)
       
   132       thus "$ s a |- App e1 e2 :: t";
   126       thus "$ s a |- App e1 e2 :: t";
   133       proof (elim exE conjE);
   127 	obtain s1 t1 n1 s2 t2 n2 u in
   134         fix s1 t1 n1 s2 t2 n2 u;
   128           s: "s = $ u o $ s2 o s1"
   135         assume s: "s = $ u o $ s2 o s1"
       
   136           and t: "t = u n2"
   129           and t: "t = u n2"
   137           and mgu_ok: "mgu ($ s2 t1) (t2 -> TVar n2) = Ok u"
   130           and mgu_ok: "mgu ($ s2 t1) (t2 -> TVar n2) = Ok u"
   138           and W1_ok: "W e1 a n = Ok (s1, t1, n1)"
   131           and W1_ok: "W e1 a n = Ok (s1, t1, n1)"
   139           and W2_ok: "W e2 ($ s1 a) n1 = Ok (s2, t2, n2)";
   132           and W2_ok: "W e2 ($ s1 a) n1 = Ok (s2, t2, n2)";
       
   133 	    by (rule rev_mp) simp;
   140         show ?thesis;
   134         show ?thesis;
   141         proof (rule has_type.AppI);
   135         proof (rule has_type.AppI);
   142           from s; have s': "$ u ($ s2 ($ s1 a)) = $s a";
   136           from s; have s': "$ u ($ s2 ($ s1 a)) = $s a";
   143             by (simp add: subst_comp_tel o_def);
   137             by (simp add: subst_comp_tel o_def);
   144           show "$s a |- e1 :: $ u t2 -> t";
   138           show "$s a |- e1 :: $ u t2 -> t";