src/HOL/Library/Set_Algebras.thy
changeset 38622 86fc906dcd86
parent 35267 8dfd816713c6
child 39198 f967a16dfcdd
equal deleted inserted replaced
38621:d6cb7e625d75 38622:86fc906dcd86
       
     1 (*  Title:      HOL/Library/Set_Algebras.thy
       
     2     Author:     Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM
       
     3 *)
       
     4 
       
     5 header {* Algebraic operations on sets *}
       
     6 
       
     7 theory Set_Algebras
       
     8 imports Main
       
     9 begin
       
    10 
       
    11 text {*
       
    12   This library lifts operations like addition and muliplication to
       
    13   sets.  It was designed to support asymptotic calculations. See the
       
    14   comments at the top of theory @{text BigO}.
       
    15 *}
       
    16 
       
    17 definition set_plus :: "'a::plus set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<oplus>" 65) where
       
    18   "A \<oplus> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a + b}"
       
    19 
       
    20 definition set_times :: "'a::times set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<otimes>" 70) where
       
    21   "A \<otimes> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a * b}"
       
    22 
       
    23 definition elt_set_plus :: "'a::plus \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "+o" 70) where
       
    24   "a +o B = {c. \<exists>b\<in>B. c = a + b}"
       
    25 
       
    26 definition elt_set_times :: "'a::times \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "*o" 80) where
       
    27   "a *o B = {c. \<exists>b\<in>B. c = a * b}"
       
    28 
       
    29 abbreviation (input) elt_set_eq :: "'a \<Rightarrow> 'a set \<Rightarrow> bool"  (infix "=o" 50) where
       
    30   "x =o A \<equiv> x \<in> A"
       
    31 
       
    32 interpretation set_add!: semigroup "set_plus :: 'a::semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    33 qed (force simp add: set_plus_def add.assoc)
       
    34 
       
    35 interpretation set_add!: abel_semigroup "set_plus :: 'a::ab_semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    36 qed (force simp add: set_plus_def add.commute)
       
    37 
       
    38 interpretation set_add!: monoid "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" proof
       
    39 qed (simp_all add: set_plus_def)
       
    40 
       
    41 interpretation set_add!: comm_monoid "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" proof
       
    42 qed (simp add: set_plus_def)
       
    43 
       
    44 definition listsum_set :: "('a::monoid_add set) list \<Rightarrow> 'a set" where
       
    45   "listsum_set = monoid_add.listsum set_plus {0}"
       
    46 
       
    47 interpretation set_add!: monoid_add "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" where
       
    48   "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    49 proof -
       
    50   show "class.monoid_add set_plus {0::'a}" proof
       
    51   qed (simp_all add: set_add.assoc)
       
    52   then interpret set_add!: monoid_add "set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" .
       
    53   show "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    54     by (simp only: listsum_set_def)
       
    55 qed
       
    56 
       
    57 definition setsum_set :: "('b \<Rightarrow> ('a::comm_monoid_add) set) \<Rightarrow> 'b set \<Rightarrow> 'a set" where
       
    58   "setsum_set f A = (if finite A then fold_image set_plus f {0} A else {0})"
       
    59 
       
    60 interpretation set_add!:
       
    61   comm_monoid_big "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" setsum_set 
       
    62 proof
       
    63 qed (fact setsum_set_def)
       
    64 
       
    65 interpretation set_add!: comm_monoid_add "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" where
       
    66   "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    67   and "comm_monoid_add.setsum set_plus {0::'a} = setsum_set"
       
    68 proof -
       
    69   show "class.comm_monoid_add (set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {0}" proof
       
    70   qed (simp_all add: set_add.commute)
       
    71   then interpret set_add!: comm_monoid_add "set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" .
       
    72   show "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    73     by (simp only: listsum_set_def)
       
    74   show "comm_monoid_add.setsum set_plus {0::'a} = setsum_set"
       
    75     by (simp add: set_add.setsum_def setsum_set_def expand_fun_eq)
       
    76 qed
       
    77 
       
    78 interpretation set_mult!: semigroup "set_times :: 'a::semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    79 qed (force simp add: set_times_def mult.assoc)
       
    80 
       
    81 interpretation set_mult!: abel_semigroup "set_times :: 'a::ab_semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    82 qed (force simp add: set_times_def mult.commute)
       
    83 
       
    84 interpretation set_mult!: monoid "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" proof
       
    85 qed (simp_all add: set_times_def)
       
    86 
       
    87 interpretation set_mult!: comm_monoid "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" proof
       
    88 qed (simp add: set_times_def)
       
    89 
       
    90 definition power_set :: "nat \<Rightarrow> ('a::monoid_mult set) \<Rightarrow> 'a set" where
       
    91   "power_set n A = power.power {1} set_times A n"
       
    92 
       
    93 interpretation set_mult!: monoid_mult "{1}" "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
       
    94   "power.power {1} set_times = (\<lambda>A n. power_set n A)"
       
    95 proof -
       
    96   show "class.monoid_mult {1} (set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set)" proof
       
    97   qed (simp_all add: set_mult.assoc)
       
    98   show "power.power {1} set_times = (\<lambda>A n. power_set n A)"
       
    99     by (simp add: power_set_def)
       
   100 qed
       
   101 
       
   102 definition setprod_set :: "('b \<Rightarrow> ('a::comm_monoid_mult) set) \<Rightarrow> 'b set \<Rightarrow> 'a set" where
       
   103   "setprod_set f A = (if finite A then fold_image set_times f {1} A else {1})"
       
   104 
       
   105 interpretation set_mult!:
       
   106   comm_monoid_big "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" setprod_set 
       
   107 proof
       
   108 qed (fact setprod_set_def)
       
   109 
       
   110 interpretation set_mult!: comm_monoid_mult "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" where
       
   111   "power.power {1} set_times = (\<lambda>A n. power_set n A)"
       
   112   and "comm_monoid_mult.setprod set_times {1::'a} = setprod_set"
       
   113 proof -
       
   114   show "class.comm_monoid_mult (set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {1}" proof
       
   115   qed (simp_all add: set_mult.commute)
       
   116   then interpret set_mult!: comm_monoid_mult "set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" .
       
   117   show "power.power {1} set_times = (\<lambda>A n. power_set n A)"
       
   118     by (simp add: power_set_def)
       
   119   show "comm_monoid_mult.setprod set_times {1::'a} = setprod_set"
       
   120     by (simp add: set_mult.setprod_def setprod_set_def expand_fun_eq)
       
   121 qed
       
   122 
       
   123 lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \<oplus> D"
       
   124   by (auto simp add: set_plus_def)
       
   125 
       
   126 lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C"
       
   127   by (auto simp add: elt_set_plus_def)
       
   128 
       
   129 lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) \<oplus>
       
   130     (b +o D) = (a + b) +o (C \<oplus> D)"
       
   131   apply (auto simp add: elt_set_plus_def set_plus_def add_ac)
       
   132    apply (rule_tac x = "ba + bb" in exI)
       
   133   apply (auto simp add: add_ac)
       
   134   apply (rule_tac x = "aa + a" in exI)
       
   135   apply (auto simp add: add_ac)
       
   136   done
       
   137 
       
   138 lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) =
       
   139     (a + b) +o C"
       
   140   by (auto simp add: elt_set_plus_def add_assoc)
       
   141 
       
   142 lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) \<oplus> C =
       
   143     a +o (B \<oplus> C)"
       
   144   apply (auto simp add: elt_set_plus_def set_plus_def)
       
   145    apply (blast intro: add_ac)
       
   146   apply (rule_tac x = "a + aa" in exI)
       
   147   apply (rule conjI)
       
   148    apply (rule_tac x = "aa" in bexI)
       
   149     apply auto
       
   150   apply (rule_tac x = "ba" in bexI)
       
   151    apply (auto simp add: add_ac)
       
   152   done
       
   153 
       
   154 theorem set_plus_rearrange4: "C \<oplus> ((a::'a::comm_monoid_add) +o D) =
       
   155     a +o (C \<oplus> D)"
       
   156   apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus_def add_ac)
       
   157    apply (rule_tac x = "aa + ba" in exI)
       
   158    apply (auto simp add: add_ac)
       
   159   done
       
   160 
       
   161 theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
       
   162   set_plus_rearrange3 set_plus_rearrange4
       
   163 
       
   164 lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D"
       
   165   by (auto simp add: elt_set_plus_def)
       
   166 
       
   167 lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==>
       
   168     C \<oplus> E <= D \<oplus> F"
       
   169   by (auto simp add: set_plus_def)
       
   170 
       
   171 lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C \<oplus> D"
       
   172   by (auto simp add: elt_set_plus_def set_plus_def)
       
   173 
       
   174 lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==>
       
   175     a +o D <= D \<oplus> C"
       
   176   by (auto simp add: elt_set_plus_def set_plus_def add_ac)
       
   177 
       
   178 lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C \<oplus> D"
       
   179   apply (subgoal_tac "a +o B <= a +o D")
       
   180    apply (erule order_trans)
       
   181    apply (erule set_plus_mono3)
       
   182   apply (erule set_plus_mono)
       
   183   done
       
   184 
       
   185 lemma set_plus_mono_b: "C <= D ==> x : a +o C
       
   186     ==> x : a +o D"
       
   187   apply (frule set_plus_mono)
       
   188   apply auto
       
   189   done
       
   190 
       
   191 lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C \<oplus> E ==>
       
   192     x : D \<oplus> F"
       
   193   apply (frule set_plus_mono2)
       
   194    prefer 2
       
   195    apply force
       
   196   apply assumption
       
   197   done
       
   198 
       
   199 lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C \<oplus> D"
       
   200   apply (frule set_plus_mono3)
       
   201   apply auto
       
   202   done
       
   203 
       
   204 lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==>
       
   205     x : a +o D ==> x : D \<oplus> C"
       
   206   apply (frule set_plus_mono4)
       
   207   apply auto
       
   208   done
       
   209 
       
   210 lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C"
       
   211   by (auto simp add: elt_set_plus_def)
       
   212 
       
   213 lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \<oplus> B"
       
   214   apply (auto intro!: subsetI simp add: set_plus_def)
       
   215   apply (rule_tac x = 0 in bexI)
       
   216    apply (rule_tac x = x in bexI)
       
   217     apply (auto simp add: add_ac)
       
   218   done
       
   219 
       
   220 lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C"
       
   221   by (auto simp add: elt_set_plus_def add_ac diff_minus)
       
   222 
       
   223 lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C"
       
   224   apply (auto simp add: elt_set_plus_def add_ac diff_minus)
       
   225   apply (subgoal_tac "a = (a + - b) + b")
       
   226    apply (rule bexI, assumption, assumption)
       
   227   apply (auto simp add: add_ac)
       
   228   done
       
   229 
       
   230 lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)"
       
   231   by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus,
       
   232     assumption)
       
   233 
       
   234 lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C \<otimes> D"
       
   235   by (auto simp add: set_times_def)
       
   236 
       
   237 lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C"
       
   238   by (auto simp add: elt_set_times_def)
       
   239 
       
   240 lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) \<otimes>
       
   241     (b *o D) = (a * b) *o (C \<otimes> D)"
       
   242   apply (auto simp add: elt_set_times_def set_times_def)
       
   243    apply (rule_tac x = "ba * bb" in exI)
       
   244    apply (auto simp add: mult_ac)
       
   245   apply (rule_tac x = "aa * a" in exI)
       
   246   apply (auto simp add: mult_ac)
       
   247   done
       
   248 
       
   249 lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) =
       
   250     (a * b) *o C"
       
   251   by (auto simp add: elt_set_times_def mult_assoc)
       
   252 
       
   253 lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) \<otimes> C =
       
   254     a *o (B \<otimes> C)"
       
   255   apply (auto simp add: elt_set_times_def set_times_def)
       
   256    apply (blast intro: mult_ac)
       
   257   apply (rule_tac x = "a * aa" in exI)
       
   258   apply (rule conjI)
       
   259    apply (rule_tac x = "aa" in bexI)
       
   260     apply auto
       
   261   apply (rule_tac x = "ba" in bexI)
       
   262    apply (auto simp add: mult_ac)
       
   263   done
       
   264 
       
   265 theorem set_times_rearrange4: "C \<otimes> ((a::'a::comm_monoid_mult) *o D) =
       
   266     a *o (C \<otimes> D)"
       
   267   apply (auto intro!: subsetI simp add: elt_set_times_def set_times_def
       
   268     mult_ac)
       
   269    apply (rule_tac x = "aa * ba" in exI)
       
   270    apply (auto simp add: mult_ac)
       
   271   done
       
   272 
       
   273 theorems set_times_rearranges = set_times_rearrange set_times_rearrange2
       
   274   set_times_rearrange3 set_times_rearrange4
       
   275 
       
   276 lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D"
       
   277   by (auto simp add: elt_set_times_def)
       
   278 
       
   279 lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==>
       
   280     C \<otimes> E <= D \<otimes> F"
       
   281   by (auto simp add: set_times_def)
       
   282 
       
   283 lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C \<otimes> D"
       
   284   by (auto simp add: elt_set_times_def set_times_def)
       
   285 
       
   286 lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==>
       
   287     a *o D <= D \<otimes> C"
       
   288   by (auto simp add: elt_set_times_def set_times_def mult_ac)
       
   289 
       
   290 lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C \<otimes> D"
       
   291   apply (subgoal_tac "a *o B <= a *o D")
       
   292    apply (erule order_trans)
       
   293    apply (erule set_times_mono3)
       
   294   apply (erule set_times_mono)
       
   295   done
       
   296 
       
   297 lemma set_times_mono_b: "C <= D ==> x : a *o C
       
   298     ==> x : a *o D"
       
   299   apply (frule set_times_mono)
       
   300   apply auto
       
   301   done
       
   302 
       
   303 lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C \<otimes> E ==>
       
   304     x : D \<otimes> F"
       
   305   apply (frule set_times_mono2)
       
   306    prefer 2
       
   307    apply force
       
   308   apply assumption
       
   309   done
       
   310 
       
   311 lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C \<otimes> D"
       
   312   apply (frule set_times_mono3)
       
   313   apply auto
       
   314   done
       
   315 
       
   316 lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==>
       
   317     x : a *o D ==> x : D \<otimes> C"
       
   318   apply (frule set_times_mono4)
       
   319   apply auto
       
   320   done
       
   321 
       
   322 lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C"
       
   323   by (auto simp add: elt_set_times_def)
       
   324 
       
   325 lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)=
       
   326     (a * b) +o (a *o C)"
       
   327   by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs)
       
   328 
       
   329 lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B \<oplus> C) =
       
   330     (a *o B) \<oplus> (a *o C)"
       
   331   apply (auto simp add: set_plus_def elt_set_times_def ring_distribs)
       
   332    apply blast
       
   333   apply (rule_tac x = "b + bb" in exI)
       
   334   apply (auto simp add: ring_distribs)
       
   335   done
       
   336 
       
   337 lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \<otimes> D <=
       
   338     a *o D \<oplus> C \<otimes> D"
       
   339   apply (auto intro!: subsetI simp add:
       
   340     elt_set_plus_def elt_set_times_def set_times_def
       
   341     set_plus_def ring_distribs)
       
   342   apply auto
       
   343   done
       
   344 
       
   345 theorems set_times_plus_distribs =
       
   346   set_times_plus_distrib
       
   347   set_times_plus_distrib2
       
   348 
       
   349 lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==>
       
   350     - a : C"
       
   351   by (auto simp add: elt_set_times_def)
       
   352 
       
   353 lemma set_neg_intro2: "(a::'a::ring_1) : C ==>
       
   354     - a : (- 1) *o C"
       
   355   by (auto simp add: elt_set_times_def)
       
   356 
       
   357 end