src/HOL/Analysis/Winding_Numbers.thy
changeset 65039 87972e6177bc
child 65064 a4abec71279a
equal deleted inserted replaced
65038:9391ea7daa17 65039:87972e6177bc
       
     1 section \<open>Winding Numbers\<close>
       
     2 
       
     3 text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2017)\<close>
       
     4 
       
     5 theory Winding_Numbers
       
     6 imports Polytope Jordan_Curve Cauchy_Integral_Theorem
       
     7 begin
       
     8 
       
     9 subsection\<open>Winding number for a triangle\<close>
       
    10 
       
    11 lemma wn_triangle1:
       
    12   assumes "0 \<in> interior(convex hull {a,b,c})"
       
    13     shows "~ (Im(a/b) \<le> 0 \<and> 0 \<le> Im(b/c))"
       
    14 proof -
       
    15   { assume 0: "Im(a/b) \<le> 0" "0 \<le> Im(b/c)"
       
    16     have "0 \<notin> interior (convex hull {a,b,c})"
       
    17     proof (cases "a=0 \<or> b=0 \<or> c=0")
       
    18       case True then show ?thesis
       
    19         by (auto simp: not_in_interior_convex_hull_3)
       
    20     next
       
    21       case False
       
    22       then have "b \<noteq> 0" by blast
       
    23       { fix x y::complex and u::real
       
    24         assume eq_f': "Im x * Re b \<le> Im b * Re x" "Im y * Re b \<le> Im b * Re y" "0 \<le> u" "u \<le> 1"
       
    25         then have "((1 - u) * Im x) * Re b \<le> Im b * ((1 - u) * Re x)"
       
    26           by (simp add: mult_left_mono mult.assoc mult.left_commute [of "Im b"])
       
    27         then have "((1 - u) * Im x + u * Im y) * Re b \<le> Im b * ((1 - u) * Re x + u * Re y)"
       
    28           using eq_f' ordered_comm_semiring_class.comm_mult_left_mono
       
    29           by (fastforce simp add: algebra_simps)
       
    30       }
       
    31       with False 0 have "convex hull {a,b,c} \<le> {z. Im z * Re b \<le> Im b * Re z}"
       
    32         apply (simp add: Complex.Im_divide divide_simps complex_neq_0 [symmetric])
       
    33         apply (simp add: algebra_simps)
       
    34         apply (rule hull_minimal)
       
    35         apply (auto simp: algebra_simps convex_alt)
       
    36         done
       
    37       moreover have "0 \<notin> interior({z. Im z * Re b \<le> Im b * Re z})"
       
    38       proof
       
    39         assume "0 \<in> interior {z. Im z * Re b \<le> Im b * Re z}"
       
    40         then obtain e where "e>0" and e: "ball 0 e \<subseteq> {z. Im z * Re b \<le> Im b * Re z}"
       
    41           by (meson mem_interior)
       
    42         def z \<equiv> "- sgn (Im b) * (e/3) + sgn (Re b) * (e/3) * ii"
       
    43         have "z \<in> ball 0 e"
       
    44           using `e>0`
       
    45           apply (simp add: z_def dist_norm)
       
    46           apply (rule le_less_trans [OF norm_triangle_ineq4])
       
    47           apply (simp add: norm_mult abs_sgn_eq)
       
    48           done
       
    49         then have "z \<in> {z. Im z * Re b \<le> Im b * Re z}"
       
    50           using e by blast
       
    51         then show False
       
    52           using `e>0` `b \<noteq> 0`
       
    53           apply (simp add: z_def dist_norm sgn_if less_eq_real_def mult_less_0_iff complex.expand split: if_split_asm)
       
    54           apply (auto simp: algebra_simps)
       
    55           apply (meson less_asym less_trans mult_pos_pos neg_less_0_iff_less)
       
    56           by (metis less_asym mult_pos_pos neg_less_0_iff_less)
       
    57       qed
       
    58       ultimately show ?thesis
       
    59         using interior_mono by blast
       
    60     qed
       
    61   } with assms show ?thesis by blast
       
    62 qed
       
    63 
       
    64 lemma wn_triangle2_0:
       
    65   assumes "0 \<in> interior(convex hull {a,b,c})"
       
    66   shows
       
    67        "0 < Im((b - a) * cnj (b)) \<and>
       
    68         0 < Im((c - b) * cnj (c)) \<and>
       
    69         0 < Im((a - c) * cnj (a))
       
    70         \<or>
       
    71         Im((b - a) * cnj (b)) < 0 \<and>
       
    72         0 < Im((b - c) * cnj (b)) \<and>
       
    73         0 < Im((a - b) * cnj (a)) \<and>
       
    74         0 < Im((c - a) * cnj (c))"
       
    75 proof -
       
    76   have [simp]: "{b,c,a} = {a,b,c}" "{c,a,b} = {a,b,c}" by auto
       
    77   show ?thesis
       
    78     using wn_triangle1 [OF assms] wn_triangle1 [of b c a] wn_triangle1 [of c a b] assms
       
    79     by (auto simp: algebra_simps Im_complex_div_gt_0 Im_complex_div_lt_0 not_le not_less)
       
    80 qed
       
    81 
       
    82 lemma wn_triangle2:
       
    83   assumes "z \<in> interior(convex hull {a,b,c})"
       
    84    shows "0 < Im((b - a) * cnj (b - z)) \<and>
       
    85           0 < Im((c - b) * cnj (c - z)) \<and>
       
    86           0 < Im((a - c) * cnj (a - z))
       
    87           \<or>
       
    88           Im((b - a) * cnj (b - z)) < 0 \<and>
       
    89           0 < Im((b - c) * cnj (b - z)) \<and>
       
    90           0 < Im((a - b) * cnj (a - z)) \<and>
       
    91           0 < Im((c - a) * cnj (c - z))"
       
    92 proof -
       
    93   have 0: "0 \<in> interior(convex hull {a-z, b-z, c-z})"
       
    94     using assms convex_hull_translation [of "-z" "{a,b,c}"]
       
    95                 interior_translation [of "-z"]
       
    96     by simp
       
    97   show ?thesis using wn_triangle2_0 [OF 0]
       
    98     by simp
       
    99 qed
       
   100 
       
   101 lemma wn_triangle3:
       
   102   assumes z: "z \<in> interior(convex hull {a,b,c})"
       
   103       and "0 < Im((b-a) * cnj (b-z))"
       
   104           "0 < Im((c-b) * cnj (c-z))"
       
   105           "0 < Im((a-c) * cnj (a-z))"
       
   106     shows "winding_number (linepath a b +++ linepath b c +++ linepath c a) z = 1"
       
   107 proof -
       
   108   have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
       
   109     using z interior_of_triangle [of a b c]
       
   110     by (auto simp: closed_segment_def)
       
   111   have gt0: "0 < Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z)"
       
   112     using assms
       
   113     by (simp add: winding_number_linepath_pos_lt path_image_join winding_number_join_pos_combined)
       
   114   have lt2: "Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z) < 2"
       
   115     using winding_number_lt_half_linepath [of _ a b]
       
   116     using winding_number_lt_half_linepath [of _ b c]
       
   117     using winding_number_lt_half_linepath [of _ c a] znot
       
   118     apply (fastforce simp add: winding_number_join path_image_join)
       
   119     done
       
   120   show ?thesis
       
   121     by (rule winding_number_eq_1) (simp_all add: path_image_join gt0 lt2)
       
   122 qed
       
   123 
       
   124 proposition winding_number_triangle:
       
   125   assumes z: "z \<in> interior(convex hull {a,b,c})"
       
   126     shows "winding_number(linepath a b +++ linepath b c +++ linepath c a) z =
       
   127            (if 0 < Im((b - a) * cnj (b - z)) then 1 else -1)"
       
   128 proof -
       
   129   have [simp]: "{a,c,b} = {a,b,c}"  by auto
       
   130   have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
       
   131     using z interior_of_triangle [of a b c]
       
   132     by (auto simp: closed_segment_def)
       
   133   then have [simp]: "z \<notin> closed_segment b a" "z \<notin> closed_segment c b" "z \<notin> closed_segment a c"
       
   134     using closed_segment_commute by blast+
       
   135   have *: "winding_number (linepath a b +++ linepath b c +++ linepath c a) z =
       
   136             winding_number (reversepath (linepath a c +++ linepath c b +++ linepath b a)) z"
       
   137     by (simp add: reversepath_joinpaths winding_number_join not_in_path_image_join)
       
   138   show ?thesis
       
   139     using wn_triangle2 [OF z] apply (rule disjE)
       
   140     apply (simp add: wn_triangle3 z)
       
   141     apply (simp add: path_image_join winding_number_reversepath * wn_triangle3 z)
       
   142     done
       
   143 qed
       
   144 
       
   145 subsection\<open>Winding numbers for simple closed paths\<close>
       
   146 
       
   147 lemma winding_number_from_innerpath:
       
   148   assumes "simple_path c1" and c1: "pathstart c1 = a" "pathfinish c1 = b"
       
   149       and "simple_path c2" and c2: "pathstart c2 = a" "pathfinish c2 = b"
       
   150       and "simple_path c" and c: "pathstart c = a" "pathfinish c = b"
       
   151       and c1c2: "path_image c1 \<inter> path_image c2 = {a,b}"
       
   152       and c1c:  "path_image c1 \<inter> path_image c = {a,b}"
       
   153       and c2c:  "path_image c2 \<inter> path_image c = {a,b}"
       
   154       and ne_12: "path_image c \<inter> inside(path_image c1 \<union> path_image c2) \<noteq> {}"
       
   155       and z: "z \<in> inside(path_image c1 \<union> path_image c)"
       
   156       and wn_d: "winding_number (c1 +++ reversepath c) z = d"
       
   157       and "a \<noteq> b" "d \<noteq> 0"
       
   158   obtains "z \<in> inside(path_image c1 \<union> path_image c2)" "winding_number (c1 +++ reversepath c2) z = d"
       
   159 proof -
       
   160   obtain 0: "inside(path_image c1 \<union> path_image c) \<inter> inside(path_image c2 \<union> path_image c) = {}"
       
   161      and 1: "inside(path_image c1 \<union> path_image c) \<union> inside(path_image c2 \<union> path_image c) \<union>
       
   162              (path_image c - {a,b}) = inside(path_image c1 \<union> path_image c2)"
       
   163     by (rule split_inside_simple_closed_curve
       
   164               [OF \<open>simple_path c1\<close> c1 \<open>simple_path c2\<close> c2 \<open>simple_path c\<close> c \<open>a \<noteq> b\<close> c1c2 c1c c2c ne_12])
       
   165   have znot: "z \<notin> path_image c"  "z \<notin> path_image c1" "z \<notin> path_image c2"
       
   166     using union_with_outside z 1 by auto
       
   167   have wn_cc2: "winding_number (c +++ reversepath c2) z = 0"
       
   168     apply (rule winding_number_zero_in_outside)
       
   169     apply (simp_all add: \<open>simple_path c2\<close> c c2 \<open>simple_path c\<close> simple_path_imp_path path_image_join)
       
   170     by (metis "0" ComplI UnE disjoint_iff_not_equal sup.commute union_with_inside z znot)
       
   171   show ?thesis
       
   172   proof
       
   173     show "z \<in> inside (path_image c1 \<union> path_image c2)"
       
   174       using "1" z by blast
       
   175     have "winding_number c1 z - winding_number c z = d "
       
   176       using assms znot
       
   177       by (metis wn_d winding_number_join simple_path_imp_path winding_number_reversepath add.commute path_image_reversepath path_reversepath pathstart_reversepath uminus_add_conv_diff)
       
   178     then show "winding_number (c1 +++ reversepath c2) z = d"
       
   179       using wn_cc2 by (simp add: winding_number_join simple_path_imp_path assms znot winding_number_reversepath)
       
   180   qed
       
   181 qed
       
   182 
       
   183 
       
   184 
       
   185 lemma simple_closed_path_wn1:
       
   186   fixes a::complex and e::real
       
   187   assumes "0 < e"
       
   188     and sp_pl: "simple_path(p +++ linepath (a - e) (a + e))"
       
   189     and psp:   "pathstart p = a + e"
       
   190     and pfp:   "pathfinish p = a - e"
       
   191     and disj:  "ball a e \<inter> path_image p = {}"
       
   192 obtains z where "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
       
   193                 "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1"
       
   194 proof -
       
   195   have "arc p" and arc_lp: "arc (linepath (a - e) (a + e))"
       
   196     and pap: "path_image p \<inter> path_image (linepath (a - e) (a + e)) \<subseteq> {pathstart p, a-e}"
       
   197     using simple_path_join_loop_eq [of "linepath (a - e) (a + e)" p] assms by auto
       
   198   have mid_eq_a: "midpoint (a - e) (a + e) = a"
       
   199     by (simp add: midpoint_def)
       
   200   then have "a \<in> path_image(p +++ linepath (a - e) (a + e))"
       
   201     apply (simp add: assms path_image_join)
       
   202     by (metis midpoint_in_closed_segment)
       
   203   have "a \<in> frontier(inside (path_image(p +++ linepath (a - e) (a + e))))"
       
   204     apply (simp add: assms Jordan_inside_outside)
       
   205     apply (simp_all add: assms path_image_join)
       
   206     by (metis mid_eq_a midpoint_in_closed_segment)
       
   207   with \<open>0 < e\<close> obtain c where c: "c \<in> inside (path_image(p +++ linepath (a - e) (a + e)))"
       
   208                   and dac: "dist a c < e"
       
   209     by (auto simp: frontier_straddle)
       
   210   then have "c \<notin> path_image(p +++ linepath (a - e) (a + e))"
       
   211     using inside_no_overlap by blast
       
   212   then have "c \<notin> path_image p"
       
   213             "c \<notin> closed_segment (a - of_real e) (a + of_real e)"
       
   214     by (simp_all add: assms path_image_join)
       
   215   with \<open>0 < e\<close> dac have "c \<notin> affine hull {a - of_real e, a + of_real e}"
       
   216     by (simp add: segment_as_ball not_le)
       
   217   with \<open>0 < e\<close> have *: "~collinear{a - e, c,a + e}"
       
   218     using collinear_3_affine_hull [of "a-e" "a+e"] by (auto simp: insert_commute)
       
   219   have 13: "1/3 + 1/3 + 1/3 = (1::real)" by simp
       
   220   have "(1/3) *\<^sub>R (a - of_real e) + (1/3) *\<^sub>R c + (1/3) *\<^sub>R (a + of_real e) \<in> interior(convex hull {a - e, c, a + e})"
       
   221     using interior_convex_hull_3_minimal [OF * DIM_complex]
       
   222     by clarsimp (metis 13 zero_less_divide_1_iff zero_less_numeral)
       
   223   then obtain z where z: "z \<in> interior(convex hull {a - e, c, a + e})" by force
       
   224   have [simp]: "z \<notin> closed_segment (a - e) c"
       
   225     by (metis DIM_complex Diff_iff IntD2 inf_sup_absorb interior_of_triangle z)
       
   226   have [simp]: "z \<notin> closed_segment (a + e) (a - e)"
       
   227     by (metis DIM_complex DiffD2 Un_iff interior_of_triangle z)
       
   228   have [simp]: "z \<notin> closed_segment c (a + e)"
       
   229     by (metis (no_types, lifting) DIM_complex DiffD2 Un_insert_right inf_sup_aci(5) insertCI interior_of_triangle mk_disjoint_insert z)
       
   230   show thesis
       
   231   proof
       
   232     have "norm (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z) = 1"
       
   233       using winding_number_triangle [OF z] by simp
       
   234     have zin: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union> path_image p)"
       
   235       and zeq: "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
       
   236                 winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
       
   237     proof (rule winding_number_from_innerpath
       
   238         [of "linepath (a + e) (a - e)" "a+e" "a-e" p
       
   239           "linepath (a + e) c +++ linepath c (a - e)" z
       
   240           "winding_number (linepath (a - e)  c +++ linepath  c (a + e) +++ linepath (a + e) (a - e)) z"])
       
   241       show sp_aec: "simple_path (linepath (a + e) c +++ linepath c (a - e))"
       
   242       proof (rule arc_imp_simple_path [OF arc_join])
       
   243         show "arc (linepath (a + e) c)"
       
   244           by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathstart_in_path_image psp)
       
   245         show "arc (linepath c (a - e))"
       
   246           by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathfinish_in_path_image pfp)
       
   247         show "path_image (linepath (a + e) c) \<inter> path_image (linepath c (a - e)) \<subseteq> {pathstart (linepath c (a - e))}"
       
   248           by clarsimp (metis "*" IntI Int_closed_segment closed_segment_commute singleton_iff)
       
   249       qed auto
       
   250       show "simple_path p"
       
   251         using \<open>arc p\<close> arc_simple_path by blast
       
   252       show sp_ae2: "simple_path (linepath (a + e) (a - e))"
       
   253         using \<open>arc p\<close> arc_distinct_ends pfp psp by fastforce
       
   254       show pa: "pathfinish (linepath (a + e) (a - e)) = a - e"
       
   255            "pathstart (linepath (a + e) c +++ linepath c (a - e)) = a + e"
       
   256            "pathfinish (linepath (a + e) c +++ linepath c (a - e)) = a - e"
       
   257            "pathstart p = a + e" "pathfinish p = a - e"
       
   258            "pathstart (linepath (a + e) (a - e)) = a + e"
       
   259         by (simp_all add: assms)
       
   260       show 1: "path_image (linepath (a + e) (a - e)) \<inter> path_image p = {a + e, a - e}"
       
   261       proof
       
   262         show "path_image (linepath (a + e) (a - e)) \<inter> path_image p \<subseteq> {a + e, a - e}"
       
   263           using pap closed_segment_commute psp segment_convex_hull by fastforce
       
   264         show "{a + e, a - e} \<subseteq> path_image (linepath (a + e) (a - e)) \<inter> path_image p"
       
   265           using pap pathfinish_in_path_image pathstart_in_path_image pfp psp by fastforce
       
   266       qed
       
   267       show 2: "path_image (linepath (a + e) (a - e)) \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) =
       
   268                {a + e, a - e}"  (is "?lhs = ?rhs")
       
   269       proof
       
   270         have "\<not> collinear {c, a + e, a - e}"
       
   271           using * by (simp add: insert_commute)
       
   272         then have "convex hull {a + e, a - e} \<inter> convex hull {a + e, c} = {a + e}"
       
   273                   "convex hull {a + e, a - e} \<inter> convex hull {c, a - e} = {a - e}"
       
   274           by (metis (full_types) Int_closed_segment insert_commute segment_convex_hull)+
       
   275         then show "?lhs \<subseteq> ?rhs"
       
   276           by (metis Int_Un_distrib equalityD1 insert_is_Un path_image_join path_image_linepath path_join_eq path_linepath segment_convex_hull simple_path_def sp_aec)
       
   277         show "?rhs \<subseteq> ?lhs"
       
   278           using segment_convex_hull by (simp add: path_image_join)
       
   279       qed
       
   280       have "path_image p \<inter> path_image (linepath (a + e) c) \<subseteq> {a + e}"
       
   281       proof (clarsimp simp: path_image_join)
       
   282         fix x
       
   283         assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment (a + e) c"
       
   284         then have "dist x a \<ge> e"
       
   285           by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
       
   286         with x_ac dac \<open>e > 0\<close> show "x = a + e"
       
   287           by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
       
   288       qed
       
   289       moreover
       
   290       have "path_image p \<inter> path_image (linepath c (a - e)) \<subseteq> {a - e}"
       
   291       proof (clarsimp simp: path_image_join)
       
   292         fix x
       
   293         assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment c (a - e)"
       
   294         then have "dist x a \<ge> e"
       
   295           by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
       
   296         with x_ac dac \<open>e > 0\<close> show "x = a - e"
       
   297           by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
       
   298       qed
       
   299       ultimately
       
   300       have "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) \<subseteq> {a + e, a - e}"
       
   301         by (force simp: path_image_join)
       
   302       then show 3: "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) = {a + e, a - e}"
       
   303         apply (rule equalityI)
       
   304         apply (clarsimp simp: path_image_join)
       
   305         apply (metis pathstart_in_path_image psp pathfinish_in_path_image pfp)
       
   306         done
       
   307       show 4: "path_image (linepath (a + e) c +++ linepath c (a - e)) \<inter>
       
   308                inside (path_image (linepath (a + e) (a - e)) \<union> path_image p) \<noteq> {}"
       
   309         apply (clarsimp simp: path_image_join segment_convex_hull disjoint_iff_not_equal)
       
   310         by (metis (no_types, hide_lams) UnI1 Un_commute c closed_segment_commute ends_in_segment(1) path_image_join
       
   311                   path_image_linepath pathstart_linepath pfp segment_convex_hull)
       
   312       show zin_inside: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union>
       
   313                                     path_image (linepath (a + e) c +++ linepath c (a - e)))"
       
   314         apply (simp add: path_image_join)
       
   315         by (metis z inside_of_triangle DIM_complex Un_commute closed_segment_commute)
       
   316       show 5: "winding_number
       
   317              (linepath (a + e) (a - e) +++ reversepath (linepath (a + e) c +++ linepath c (a - e))) z =
       
   318             winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
       
   319         by (simp add: reversepath_joinpaths path_image_join winding_number_join)
       
   320       show 6: "winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z \<noteq> 0"
       
   321         by (simp add: winding_number_triangle z)
       
   322       show "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
       
   323             winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
       
   324         by (metis 1 2 3 4 5 6 pa sp_aec sp_ae2 \<open>arc p\<close> \<open>simple_path p\<close> arc_distinct_ends winding_number_from_innerpath zin_inside)
       
   325     qed (use assms \<open>e > 0\<close> in auto)
       
   326     show "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
       
   327       using zin by (simp add: assms path_image_join Un_commute closed_segment_commute)
       
   328     then have "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) =
       
   329                cmod ((winding_number(reversepath (p +++ linepath (a - e) (a + e))) z))"
       
   330       apply (subst winding_number_reversepath)
       
   331       using simple_path_imp_path sp_pl apply blast
       
   332        apply (metis IntI emptyE inside_no_overlap)
       
   333       by (simp add: inside_def)
       
   334     also have "... = cmod (winding_number(linepath (a + e) (a - e) +++ reversepath p) z)"
       
   335       by (simp add: pfp reversepath_joinpaths)
       
   336     also have "... = cmod (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z)"
       
   337       by (simp add: zeq)
       
   338     also have "... = 1"
       
   339       using z by (simp add: interior_of_triangle winding_number_triangle)
       
   340     finally show "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1" .
       
   341   qed
       
   342 qed
       
   343 
       
   344 
       
   345 
       
   346 lemma simple_closed_path_wn2:
       
   347   fixes a::complex and d e::real
       
   348   assumes "0 < d" "0 < e"
       
   349     and sp_pl: "simple_path(p +++ linepath (a - d) (a + e))"
       
   350     and psp:   "pathstart p = a + e"
       
   351     and pfp:   "pathfinish p = a - d"
       
   352 obtains z where "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
       
   353                 "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
       
   354 proof -
       
   355   have [simp]: "a + of_real x \<in> closed_segment (a - \<alpha>) (a - \<beta>) \<longleftrightarrow> x \<in> closed_segment (-\<alpha>) (-\<beta>)" for x \<alpha> \<beta>::real
       
   356     using closed_segment_translation_eq [of a]
       
   357     by (metis (no_types, hide_lams) add_uminus_conv_diff of_real_minus of_real_closed_segment)
       
   358   have [simp]: "a - of_real x \<in> closed_segment (a + \<alpha>) (a + \<beta>) \<longleftrightarrow> -x \<in> closed_segment \<alpha> \<beta>" for x \<alpha> \<beta>::real
       
   359     by (metis closed_segment_translation_eq diff_conv_add_uminus of_real_closed_segment of_real_minus)
       
   360   have "arc p" and arc_lp: "arc (linepath (a - d) (a + e))" and "path p"
       
   361     and pap: "path_image p \<inter> closed_segment (a - d) (a + e) \<subseteq> {a+e, a-d}"
       
   362     using simple_path_join_loop_eq [of "linepath (a - d) (a + e)" p] assms arc_imp_path  by auto
       
   363   have "0 \<in> closed_segment (-d) e"
       
   364     using \<open>0 < d\<close> \<open>0 < e\<close> closed_segment_eq_real_ivl by auto
       
   365   then have "a \<in> path_image (linepath (a - d) (a + e))"
       
   366     using of_real_closed_segment [THEN iffD2]
       
   367     by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
       
   368   then have "a \<notin> path_image p"
       
   369     using \<open>0 < d\<close> \<open>0 < e\<close> pap by auto
       
   370   then obtain k where "0 < k" and k: "ball a k \<inter> (path_image p) = {}"
       
   371     using \<open>0 < e\<close> \<open>path p\<close> not_on_path_ball by blast
       
   372   define kde where "kde \<equiv> (min k (min d e)) / 2"
       
   373   have "0 < kde" "kde < k" "kde < d" "kde < e"
       
   374     using \<open>0 < k\<close> \<open>0 < d\<close> \<open>0 < e\<close> by (auto simp: kde_def)
       
   375   let ?q = "linepath (a + kde) (a + e) +++ p +++ linepath (a - d) (a - kde)"
       
   376   have "- kde \<in> closed_segment (-d) e"
       
   377     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
       
   378   then have a_diff_kde: "a - kde \<in> closed_segment (a - d) (a + e)"
       
   379     using of_real_closed_segment [THEN iffD2]
       
   380     by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
       
   381   then have clsub2: "closed_segment (a - d) (a - kde) \<subseteq> closed_segment (a - d) (a + e)"
       
   382     by (simp add: subset_closed_segment)
       
   383   then have "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a + e, a - d}"
       
   384     using pap by force
       
   385   moreover
       
   386   have "a + e \<notin> path_image p \<inter> closed_segment (a - d) (a - kde)"
       
   387     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
       
   388   ultimately have sub_a_diff_d: "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a - d}"
       
   389     by blast
       
   390   have "kde \<in> closed_segment (-d) e"
       
   391     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
       
   392   then have a_diff_kde: "a + kde \<in> closed_segment (a - d) (a + e)"
       
   393     using of_real_closed_segment [THEN iffD2]
       
   394     by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
       
   395   then have clsub1: "closed_segment (a + kde) (a + e) \<subseteq> closed_segment (a - d) (a + e)"
       
   396     by (simp add: subset_closed_segment)
       
   397   then have "closed_segment (a + kde) (a + e) \<inter> path_image p \<subseteq> {a + e, a - d}"
       
   398     using pap by force
       
   399   moreover
       
   400   have "closed_segment (a + kde) (a + e) \<inter> closed_segment (a - d) (a - kde) = {}"
       
   401   proof (clarsimp intro!: equals0I)
       
   402     fix y
       
   403     assume y1: "y \<in> closed_segment (a + kde) (a + e)"
       
   404        and y2: "y \<in> closed_segment (a - d) (a - kde)"
       
   405     obtain u where u: "y = a + of_real u" and "0 < u"
       
   406       using y1 \<open>0 < kde\<close> \<open>kde < e\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
       
   407       apply (rule_tac u = "(1 - u)*kde + u*e" in that)
       
   408        apply (auto simp: scaleR_conv_of_real algebra_simps)
       
   409       by (meson le_less_trans less_add_same_cancel2 less_eq_real_def mult_left_mono)
       
   410     moreover
       
   411     obtain v where v: "y = a + of_real v" and "v \<le> 0"
       
   412       using y2 \<open>0 < kde\<close> \<open>0 < d\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
       
   413       apply (rule_tac v = "- ((1 - u)*d + u*kde)" in that)
       
   414        apply (force simp: scaleR_conv_of_real algebra_simps)
       
   415       by (meson less_eq_real_def neg_le_0_iff_le segment_bound_lemma)
       
   416     ultimately show False
       
   417       by auto
       
   418   qed
       
   419   moreover have "a - d \<notin> closed_segment (a + kde) (a + e)"
       
   420     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
       
   421   ultimately have sub_a_plus_e:
       
   422     "closed_segment (a + kde) (a + e) \<inter> (path_image p \<union> closed_segment (a - d) (a - kde))
       
   423        \<subseteq> {a + e}"
       
   424     by auto
       
   425   have "kde \<in> closed_segment (-kde) e"
       
   426     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
       
   427   then have a_add_kde: "a + kde \<in> closed_segment (a - kde) (a + e)"
       
   428     using of_real_closed_segment [THEN iffD2]
       
   429     by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
       
   430   have "closed_segment (a - kde) (a + kde) \<inter> closed_segment (a + kde) (a + e) = {a + kde}"
       
   431     by (metis a_add_kde Int_closed_segment)
       
   432   moreover
       
   433   have "path_image p \<inter> closed_segment (a - kde) (a + kde) = {}"
       
   434   proof (rule equals0I, clarify)
       
   435     fix y  assume "y \<in> path_image p" "y \<in> closed_segment (a - kde) (a + kde)"
       
   436     with equals0D [OF k, of y] \<open>0 < kde\<close> \<open>kde < k\<close> show False
       
   437       by (auto simp: dist_norm dest: dist_decreases_closed_segment [where c=a])
       
   438   qed
       
   439   moreover
       
   440   have "- kde \<in> closed_segment (-d) kde"
       
   441     using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
       
   442   then have a_diff_kde': "a - kde \<in> closed_segment (a - d) (a + kde)"
       
   443     using of_real_closed_segment [THEN iffD2]
       
   444     by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
       
   445   then have "closed_segment (a - d) (a - kde) \<inter> closed_segment (a - kde) (a + kde) = {a - kde}"
       
   446     by (metis Int_closed_segment)
       
   447   ultimately
       
   448   have pa_subset_pm_kde: "path_image ?q \<inter> closed_segment (a - kde) (a + kde) \<subseteq> {a - kde, a + kde}"
       
   449     by (auto simp: path_image_join assms)
       
   450   have ge_kde1: "\<exists>y. x = a + y \<and> y \<ge> kde" if "x \<in> closed_segment (a + kde) (a + e)" for x
       
   451     using that \<open>kde < e\<close> mult_le_cancel_left
       
   452     apply (auto simp: in_segment)
       
   453     apply (rule_tac x="(1-u)*kde + u*e" in exI)
       
   454     apply (fastforce simp: algebra_simps scaleR_conv_of_real)
       
   455     done
       
   456   have ge_kde2: "\<exists>y. x = a + y \<and> y \<le> -kde" if "x \<in> closed_segment (a - d) (a - kde)" for x
       
   457     using that \<open>kde < d\<close> affine_ineq
       
   458     apply (auto simp: in_segment)
       
   459     apply (rule_tac x="- ((1-u)*d + u*kde)" in exI)
       
   460     apply (fastforce simp: algebra_simps scaleR_conv_of_real)
       
   461     done
       
   462   have notin_paq: "x \<notin> path_image ?q" if "dist a x < kde" for x
       
   463     using that using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < k\<close>
       
   464     apply (auto simp: path_image_join assms dist_norm dest!: ge_kde1 ge_kde2)
       
   465     by (meson k disjoint_iff_not_equal le_less_trans less_eq_real_def mem_ball that)
       
   466   obtain z where zin: "z \<in> inside (path_image (?q +++ linepath (a - kde) (a + kde)))"
       
   467            and z1: "cmod (winding_number (?q +++ linepath (a - kde) (a + kde)) z) = 1"
       
   468   proof (rule simple_closed_path_wn1 [of kde ?q a])
       
   469     show "simple_path (?q +++ linepath (a - kde) (a + kde))"
       
   470     proof (intro simple_path_join_loop conjI)
       
   471       show "arc ?q"
       
   472       proof (rule arc_join)
       
   473         show "arc (linepath (a + kde) (a + e))"
       
   474           using \<open>kde < e\<close> \<open>arc p\<close> by (force simp: pfp)
       
   475         show "arc (p +++ linepath (a - d) (a - kde))"
       
   476           using \<open>kde < d\<close> \<open>kde < e\<close> \<open>arc p\<close> sub_a_diff_d by (force simp: pfp intro: arc_join)
       
   477       qed (auto simp: psp pfp path_image_join sub_a_plus_e)
       
   478       show "arc (linepath (a - kde) (a + kde))"
       
   479         using \<open>0 < kde\<close> by auto
       
   480     qed (use pa_subset_pm_kde in auto)
       
   481   qed (use \<open>0 < kde\<close> notin_paq in auto)
       
   482   have eq: "path_image (?q +++ linepath (a - kde) (a + kde)) = path_image (p +++ linepath (a - d) (a + e))"
       
   483             (is "?lhs = ?rhs")
       
   484   proof
       
   485     show "?lhs \<subseteq> ?rhs"
       
   486       using clsub1 clsub2 apply (auto simp: path_image_join assms)
       
   487       by (meson subsetCE subset_closed_segment)
       
   488     show "?rhs \<subseteq> ?lhs"
       
   489       apply (simp add: path_image_join assms Un_ac)
       
   490         by (metis Un_closed_segment Un_assoc a_diff_kde a_diff_kde' le_supI2 subset_refl)
       
   491     qed
       
   492   show thesis
       
   493   proof
       
   494     show zzin: "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
       
   495       by (metis eq zin)
       
   496     then have znotin: "z \<notin> path_image p"
       
   497       by (metis ComplD Un_iff inside_Un_outside path_image_join pathfinish_linepath pathstart_reversepath pfp reversepath_linepath)
       
   498     have znotin_de: "z \<notin> closed_segment (a - d) (a + kde)"
       
   499       by (metis ComplD Un_iff Un_closed_segment a_diff_kde inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
       
   500     have "winding_number (linepath (a - d) (a + e)) z =
       
   501           winding_number (linepath (a - d) (a + kde)) z + winding_number (linepath (a + kde) (a + e)) z"
       
   502       apply (rule winding_number_split_linepath)
       
   503       apply (simp add: a_diff_kde)
       
   504       by (metis ComplD Un_iff inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
       
   505     also have "... = winding_number (linepath (a + kde) (a + e)) z +
       
   506                      (winding_number (linepath (a - d) (a - kde)) z +
       
   507                       winding_number (linepath (a - kde) (a + kde)) z)"
       
   508       by (simp add: winding_number_split_linepath [of "a-kde", symmetric] znotin_de a_diff_kde')
       
   509     finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
       
   510                     winding_number p z + winding_number (linepath (a + kde) (a + e)) z +
       
   511                    (winding_number (linepath (a - d) (a - kde)) z +
       
   512                     winding_number (linepath (a - kde) (a + kde)) z)"
       
   513       by (metis (no_types, lifting) ComplD Un_iff \<open>arc p\<close> add.assoc arc_imp_path eq path_image_join path_join_path_ends path_linepath simple_path_imp_path sp_pl union_with_outside winding_number_join zin)
       
   514     also have "... = winding_number ?q z + winding_number (linepath (a - kde) (a + kde)) z"
       
   515       using \<open>path p\<close> znotin assms zzin clsub1
       
   516       apply (subst winding_number_join, auto)
       
   517       apply (metis (no_types, hide_lams) ComplD Un_iff contra_subsetD inside_Un_outside path_image_join path_image_linepath pathstart_linepath)
       
   518       apply (metis Un_iff Un_closed_segment a_diff_kde' not_in_path_image_join path_image_linepath znotin_de)
       
   519       by (metis Un_iff Un_closed_segment a_diff_kde' path_image_linepath path_linepath pathstart_linepath winding_number_join znotin_de)
       
   520     also have "... = winding_number (?q +++ linepath (a - kde) (a + kde)) z"
       
   521       using \<open>path p\<close> assms zin
       
   522       apply (subst winding_number_join [symmetric], auto)
       
   523       apply (metis ComplD Un_iff path_image_join pathfinish_join pathfinish_linepath pathstart_linepath union_with_outside)
       
   524       by (metis Un_iff Un_closed_segment a_diff_kde' znotin_de)
       
   525     finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
       
   526                   winding_number (?q +++ linepath (a - kde) (a + kde)) z" .
       
   527     then show "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
       
   528       by (simp add: z1)
       
   529   qed
       
   530 qed
       
   531 
       
   532 
       
   533 proposition simple_closed_path_wn3:
       
   534   fixes p :: "real \<Rightarrow> complex"
       
   535   assumes "simple_path p" and loop: "pathfinish p = pathstart p"
       
   536   obtains z where "z \<in> inside (path_image p)" "cmod (winding_number p z) = 1"
       
   537 proof -
       
   538   have ins: "inside(path_image p) \<noteq> {}" "open(inside(path_image p))"
       
   539             "connected(inside(path_image p))"
       
   540    and out: "outside(path_image p) \<noteq> {}" "open(outside(path_image p))"
       
   541             "connected(outside(path_image p))"
       
   542    and bo:  "bounded(inside(path_image p))" "\<not> bounded(outside(path_image p))"
       
   543    and ins_out: "inside(path_image p) \<inter> outside(path_image p) = {}"
       
   544                 "inside(path_image p) \<union> outside(path_image p) = - path_image p"
       
   545    and fro: "frontier(inside(path_image p)) = path_image p"
       
   546             "frontier(outside(path_image p)) = path_image p"
       
   547     using Jordan_inside_outside [OF assms] by auto
       
   548   obtain a where a: "a \<in> inside(path_image p)"
       
   549     using \<open>inside (path_image p) \<noteq> {}\<close> by blast
       
   550   obtain d::real where "0 < d" and d_fro: "a - d \<in> frontier (inside (path_image p))"
       
   551                  and d_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < d\<rbrakk> \<Longrightarrow> (a - \<epsilon>) \<in> inside (path_image p)"
       
   552     apply (rule ray_to_frontier [of "inside (path_image p)" a "-1"])
       
   553     using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
       
   554        apply (auto simp: of_real_def)
       
   555     done
       
   556   obtain e::real where "0 < e" and e_fro: "a + e \<in> frontier (inside (path_image p))"
       
   557     and e_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < e\<rbrakk> \<Longrightarrow> (a + \<epsilon>) \<in> inside (path_image p)"
       
   558     apply (rule ray_to_frontier [of "inside (path_image p)" a 1])
       
   559     using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
       
   560        apply (auto simp: of_real_def)
       
   561     done
       
   562   obtain t0 where "0 \<le> t0" "t0 \<le> 1" and pt: "p t0 = a - d"
       
   563     using a d_fro fro by (auto simp: path_image_def)
       
   564   obtain q where "simple_path q" and q_ends: "pathstart q = a - d" "pathfinish q = a - d"
       
   565     and q_eq_p: "path_image q = path_image p"
       
   566     and wn_q_eq_wn_p: "\<And>z. z \<in> inside(path_image p) \<Longrightarrow> winding_number q z = winding_number p z"
       
   567   proof
       
   568     show "simple_path (shiftpath t0 p)"
       
   569       by (simp add: pathstart_shiftpath pathfinish_shiftpath
       
   570           simple_path_shiftpath path_image_shiftpath \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> assms)
       
   571     show "pathstart (shiftpath t0 p) = a - d"
       
   572       using pt by (simp add: \<open>t0 \<le> 1\<close> pathstart_shiftpath)
       
   573     show "pathfinish (shiftpath t0 p) = a - d"
       
   574       by (simp add: \<open>0 \<le> t0\<close> loop pathfinish_shiftpath pt)
       
   575     show "path_image (shiftpath t0 p) = path_image p"
       
   576       by (simp add: \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> loop path_image_shiftpath)
       
   577     show "winding_number (shiftpath t0 p) z = winding_number p z"
       
   578       if "z \<in> inside (path_image p)" for z
       
   579       by (metis ComplD Un_iff \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> \<open>simple_path p\<close> atLeastAtMost_iff inside_Un_outside
       
   580           loop simple_path_imp_path that winding_number_shiftpath)
       
   581   qed
       
   582   have ad_not_ae: "a - d \<noteq> a + e"
       
   583     by (metis \<open>0 < d\<close> \<open>0 < e\<close> add.left_inverse add_left_cancel add_uminus_conv_diff
       
   584         le_add_same_cancel2 less_eq_real_def not_less of_real_add of_real_def of_real_eq_0_iff pt)
       
   585   have ad_ae_q: "{a - d, a + e} \<subseteq> path_image q"
       
   586     using \<open>path_image q = path_image p\<close> d_fro e_fro fro(1) by auto
       
   587   have ada: "open_segment (a - d) a \<subseteq> inside (path_image p)"
       
   588   proof (clarsimp simp: in_segment)
       
   589     fix u::real assume "0 < u" "u < 1"
       
   590     with d_int have "a - (1 - u) * d \<in> inside (path_image p)"
       
   591       by (metis \<open>0 < d\<close> add.commute diff_add_cancel left_diff_distrib' less_add_same_cancel2 less_eq_real_def mult.left_neutral zero_less_mult_iff)
       
   592     then show "(1 - u) *\<^sub>R (a - d) + u *\<^sub>R a \<in> inside (path_image p)"
       
   593       by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
       
   594   qed
       
   595   have aae: "open_segment a (a + e) \<subseteq> inside (path_image p)"
       
   596   proof (clarsimp simp: in_segment)
       
   597     fix u::real assume "0 < u" "u < 1"
       
   598     with e_int have "a + u * e \<in> inside (path_image p)"
       
   599       by (meson \<open>0 < e\<close> less_eq_real_def mult_less_cancel_right2 not_less zero_less_mult_iff)
       
   600     then show "(1 - u) *\<^sub>R a + u *\<^sub>R (a + e) \<in> inside (path_image p)"
       
   601       apply (simp add: algebra_simps)
       
   602       by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
       
   603   qed
       
   604   have "complex_of_real (d * d + (e * e + d * (e + e))) \<noteq> 0"
       
   605     using ad_not_ae
       
   606     by (metis \<open>0 < d\<close> \<open>0 < e\<close> add_strict_left_mono less_add_same_cancel1 not_sum_squares_lt_zero
       
   607         of_real_eq_0_iff zero_less_double_add_iff_zero_less_single_add zero_less_mult_iff)
       
   608   then have a_in_de: "a \<in> open_segment (a - d) (a + e)"
       
   609     using ad_not_ae \<open>0 < d\<close> \<open>0 < e\<close>
       
   610     apply (auto simp: in_segment algebra_simps scaleR_conv_of_real)
       
   611     apply (rule_tac x="d / (d+e)" in exI)
       
   612     apply (auto simp: field_simps)
       
   613     done
       
   614   then have "open_segment (a - d) (a + e) \<subseteq> inside (path_image p)"
       
   615     using ada a aae Un_open_segment [of a "a-d" "a+e"] by blast
       
   616   then have "path_image q \<inter> open_segment (a - d) (a + e) = {}"
       
   617     using inside_no_overlap by (fastforce simp: q_eq_p)
       
   618   with ad_ae_q have paq_Int_cs: "path_image q \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
       
   619     by (simp add: closed_segment_eq_open)
       
   620   obtain t where "0 \<le> t" "t \<le> 1" and qt: "q t = a + e"
       
   621     using a e_fro fro ad_ae_q by (auto simp: path_defs)
       
   622   then have "t \<noteq> 0"
       
   623     by (metis ad_not_ae pathstart_def q_ends(1))
       
   624   then have "t \<noteq> 1"
       
   625     by (metis ad_not_ae pathfinish_def q_ends(2) qt)
       
   626   have q01: "q 0 = a - d" "q 1 = a - d"
       
   627     using q_ends by (auto simp: pathstart_def pathfinish_def)
       
   628   obtain z where zin: "z \<in> inside (path_image (subpath t 0 q +++ linepath (a - d) (a + e)))"
       
   629              and z1: "cmod (winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z) = 1"
       
   630   proof (rule simple_closed_path_wn2 [of d e "subpath t 0 q" a], simp_all add: q01)
       
   631     show "simple_path (subpath t 0 q +++ linepath (a - d) (a + e))"
       
   632     proof (rule simple_path_join_loop, simp_all add: qt q01)
       
   633       have "inj_on q (closed_segment t 0)"
       
   634         using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close>
       
   635         by (fastforce simp: simple_path_def inj_on_def closed_segment_eq_real_ivl)
       
   636       then show "arc (subpath t 0 q)"
       
   637         using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close>
       
   638         by (simp add: arc_subpath_eq simple_path_imp_path)
       
   639       show "arc (linepath (a - d) (a + e))"
       
   640         by (simp add: ad_not_ae)
       
   641       show "path_image (subpath t 0 q) \<inter> closed_segment (a - d) (a + e) \<subseteq> {a + e, a - d}"
       
   642         using qt paq_Int_cs  \<open>simple_path q\<close> \<open>0 \<le> t\<close> \<open>t \<le> 1\<close>
       
   643         by (force simp: dest: rev_subsetD [OF _ path_image_subpath_subset] intro: simple_path_imp_path)
       
   644     qed
       
   645   qed (auto simp: \<open>0 < d\<close> \<open>0 < e\<close> qt)
       
   646   have pa01_Un: "path_image (subpath 0 t q) \<union> path_image (subpath 1 t q) = path_image q"
       
   647     unfolding path_image_subpath
       
   648     using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> by (force simp: path_image_def image_iff)
       
   649   with paq_Int_cs have pa_01q:
       
   650         "(path_image (subpath 0 t q) \<union> path_image (subpath 1 t q)) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
       
   651     by metis
       
   652   have z_notin_ed: "z \<notin> closed_segment (a + e) (a - d)"
       
   653     using zin q01 by (simp add: path_image_join closed_segment_commute inside_def)
       
   654   have z_notin_0t: "z \<notin> path_image (subpath 0 t q)"
       
   655     by (metis (no_types, hide_lams) IntI Un_upper1 subsetD empty_iff inside_no_overlap path_image_join
       
   656         path_image_subpath_commute pathfinish_subpath pathstart_def pathstart_linepath q_ends(1) qt subpath_trivial zin)
       
   657   have [simp]: "- winding_number (subpath t 0 q) z = winding_number (subpath 0 t q) z"
       
   658     by (metis \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> atLeastAtMost_iff zero_le_one
       
   659               path_image_subpath_commute path_subpath real_eq_0_iff_le_ge_0
       
   660               reversepath_subpath simple_path_imp_path winding_number_reversepath z_notin_0t)
       
   661   obtain z_in_q: "z \<in> inside(path_image q)"
       
   662      and wn_q: "winding_number (subpath 0 t q +++ subpath t 1 q) z = - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
       
   663   proof (rule winding_number_from_innerpath
       
   664           [of "subpath 0 t q" "a-d" "a+e" "subpath 1 t q" "linepath (a - d) (a + e)"
       
   665             z "- winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"],
       
   666          simp_all add: q01 qt pa01_Un reversepath_subpath)
       
   667     show "simple_path (subpath 0 t q)" "simple_path (subpath 1 t q)"
       
   668       by (simp_all add: \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close> simple_path_subpath)
       
   669     show "simple_path (linepath (a - d) (a + e))"
       
   670       using ad_not_ae by blast
       
   671     show "path_image (subpath 0 t q) \<inter> path_image (subpath 1 t q) = {a - d, a + e}"  (is "?lhs = ?rhs")
       
   672     proof
       
   673       show "?lhs \<subseteq> ?rhs"
       
   674         using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 1\<close> q_ends qt q01
       
   675         by (force simp: pathfinish_def qt simple_path_def path_image_subpath)
       
   676       show "?rhs \<subseteq> ?lhs"
       
   677         using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
       
   678     qed
       
   679     show "path_image (subpath 0 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
       
   680     proof
       
   681       show "?lhs \<subseteq> ?rhs"  using paq_Int_cs pa01_Un by fastforce
       
   682       show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
       
   683     qed
       
   684     show "path_image (subpath 1 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
       
   685     proof
       
   686       show "?lhs \<subseteq> ?rhs"  by (auto simp: pa_01q [symmetric])
       
   687       show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
       
   688     qed
       
   689     show "closed_segment (a - d) (a + e) \<inter> inside (path_image q) \<noteq> {}"
       
   690       using a a_in_de open_closed_segment pa01_Un q_eq_p by fastforce
       
   691     show "z \<in> inside (path_image (subpath 0 t q) \<union> closed_segment (a - d) (a + e))"
       
   692       by (metis path_image_join path_image_linepath path_image_subpath_commute pathfinish_subpath pathstart_linepath q01(1) zin)
       
   693     show "winding_number (subpath 0 t q +++ linepath (a + e) (a - d)) z =
       
   694       - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
       
   695       using z_notin_ed z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
       
   696       by (simp add: simple_path_imp_path qt q01 path_image_subpath_commute closed_segment_commute winding_number_join winding_number_reversepath [symmetric])
       
   697     show "- complex_of_real d \<noteq> complex_of_real e"
       
   698       using ad_not_ae by auto
       
   699     show "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z \<noteq> 0"
       
   700       using z1 by auto
       
   701   qed
       
   702   show ?thesis
       
   703   proof
       
   704     show "z \<in> inside (path_image p)"
       
   705       using q_eq_p z_in_q by auto
       
   706     then have [simp]: "z \<notin> path_image q"
       
   707       by (metis disjoint_iff_not_equal inside_no_overlap q_eq_p)
       
   708     have [simp]: "z \<notin> path_image (subpath 1 t q)"
       
   709       using inside_def pa01_Un z_in_q by fastforce
       
   710     have "winding_number(subpath 0 t q +++ subpath t 1 q) z = winding_number(subpath 0 1 q) z"
       
   711       using z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
       
   712       by (simp add: simple_path_imp_path qt path_image_subpath_commute winding_number_join winding_number_subpath_combine)
       
   713     with wn_q have "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z = - winding_number q z"
       
   714       by auto
       
   715     with z1 have "cmod (winding_number q z) = 1"
       
   716       by simp
       
   717     with z1 wn_q_eq_wn_p show "cmod (winding_number p z) = 1"
       
   718       using z1 wn_q_eq_wn_p  by (simp add: \<open>z \<in> inside (path_image p)\<close>)
       
   719     qed
       
   720 qed
       
   721 
       
   722 
       
   723 theorem simple_closed_path_winding_number_inside:
       
   724   assumes "simple_path \<gamma>"
       
   725   obtains "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = 1"
       
   726         | "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = -1"
       
   727 proof (cases "pathfinish \<gamma> = pathstart \<gamma>")
       
   728   case True
       
   729   have "path \<gamma>"
       
   730     by (simp add: assms simple_path_imp_path)
       
   731   then obtain k where k: "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = k"
       
   732   proof (rule winding_number_constant)
       
   733     show "connected (inside(path_image \<gamma>))"
       
   734       by (simp add: Jordan_inside_outside True assms)
       
   735   qed (use inside_no_overlap True in auto)
       
   736   obtain z where zin: "z \<in> inside (path_image \<gamma>)" and z1: "cmod (winding_number \<gamma> z) = 1"
       
   737     using simple_closed_path_wn3 [of \<gamma>] True assms by blast
       
   738   with k have "winding_number \<gamma> z = k"
       
   739     by blast
       
   740   have "winding_number \<gamma> z \<in> \<int>"
       
   741     using zin integer_winding_number [OF \<open>path \<gamma>\<close> True] inside_def by blast
       
   742   with z1 consider "winding_number \<gamma> z = 1" | "winding_number \<gamma> z = -1"
       
   743     apply (auto simp: Ints_def abs_if split: if_split_asm)
       
   744     by (metis of_int_1 of_int_eq_iff of_int_minus)
       
   745   then show ?thesis
       
   746     using that \<open>winding_number \<gamma> z = k\<close> k by auto
       
   747 next
       
   748   case False
       
   749   then show ?thesis
       
   750     using inside_simple_curve_imp_closed assms that(2) by blast
       
   751 qed
       
   752 
       
   753 corollary simple_closed_path_abs_winding_number_inside:
       
   754   assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
       
   755     shows "\<bar>Re (winding_number \<gamma> z)\<bar> = 1"
       
   756   by (metis assms norm_minus_cancel norm_one one_complex.simps(1) real_norm_def simple_closed_path_winding_number_inside uminus_complex.simps(1))
       
   757 
       
   758 corollary simple_closed_path_norm_winding_number_inside:
       
   759   assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
       
   760   shows "norm (winding_number \<gamma> z) = 1"
       
   761 proof -
       
   762   have "pathfinish \<gamma> = pathstart \<gamma>"
       
   763     using assms inside_simple_curve_imp_closed by blast
       
   764   with assms integer_winding_number have "winding_number \<gamma> z \<in> \<int>"
       
   765     by (simp add: inside_def simple_path_def)
       
   766   then show ?thesis
       
   767     by (metis assms norm_minus_cancel norm_one simple_closed_path_winding_number_inside)
       
   768 qed
       
   769 
       
   770 corollary simple_closed_path_winding_number_cases:
       
   771    "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> {-1,0,1}"
       
   772 apply (simp add: inside_Un_outside [of "path_image \<gamma>", symmetric, unfolded set_eq_iff Set.Compl_iff] del: inside_Un_outside)
       
   773    apply (rule simple_closed_path_winding_number_inside)
       
   774   using simple_path_def winding_number_zero_in_outside by blast+
       
   775 
       
   776 corollary simple_closed_path_winding_number_pos:
       
   777    "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>; 0 < Re(winding_number \<gamma> z)\<rbrakk>
       
   778     \<Longrightarrow> winding_number \<gamma> z = 1"
       
   779 using simple_closed_path_winding_number_cases
       
   780   by fastforce
       
   781 
       
   782 end
       
   783