src/HOL/SMT/Tools/smt_normalize.ML
changeset 36898 8e55aa1306c5
parent 36897 6d1ecdb81ff0
child 36899 bcd6fce5bf06
equal deleted inserted replaced
36897:6d1ecdb81ff0 36898:8e55aa1306c5
     1 (*  Title:      HOL/SMT/Tools/smt_normalize.ML
       
     2     Author:     Sascha Boehme, TU Muenchen
       
     3 
       
     4 Normalization steps on theorems required by SMT solvers:
       
     5   * unfold trivial let expressions,
       
     6   * simplify trivial distincts (those with less than three elements),
       
     7   * rewrite bool case expressions as if expressions,
       
     8   * normalize numerals (e.g. replace negative numerals by negated positive
       
     9     numerals),
       
    10   * embed natural numbers into integers,
       
    11   * add extra rules specifying types and constants which occur frequently,
       
    12   * fully translate into object logic, add universal closure,
       
    13   * lift lambda terms,
       
    14   * make applications explicit for functions with varying number of arguments.
       
    15 *)
       
    16 
       
    17 signature SMT_NORMALIZE =
       
    18 sig
       
    19   val normalize: thm list -> Proof.context -> thm list * Proof.context
       
    20 end
       
    21 
       
    22 structure SMT_Normalize: SMT_NORMALIZE =
       
    23 struct
       
    24 
       
    25 infix 2 ??
       
    26 fun (test ?? f) x = if test x then f x else x
       
    27 
       
    28 fun if_conv c cv1 cv2 ct = (if c (Thm.term_of ct) then cv1 else cv2) ct
       
    29 fun if_true_conv c cv = if_conv c cv Conv.all_conv
       
    30 
       
    31 
       
    32 
       
    33 (* simplification of trivial distincts (distinct should have at least
       
    34    three elements in the argument list) *)
       
    35 
       
    36 local
       
    37   fun is_trivial_distinct (Const (@{const_name distinct}, _) $ t) =
       
    38         length (HOLogic.dest_list t) <= 2
       
    39     | is_trivial_distinct _ = false
       
    40 
       
    41   val thms = @{lemma
       
    42     "distinct [] == True"
       
    43     "distinct [x] == True"
       
    44     "distinct [x, y] == (x ~= y)"
       
    45     by simp_all}
       
    46   fun distinct_conv _ =
       
    47     if_true_conv is_trivial_distinct (More_Conv.rewrs_conv thms)
       
    48 in
       
    49 fun trivial_distinct ctxt =
       
    50   map ((Term.exists_subterm is_trivial_distinct o Thm.prop_of) ??
       
    51     Conv.fconv_rule (More_Conv.top_conv distinct_conv ctxt))
       
    52 end
       
    53 
       
    54 
       
    55 
       
    56 (* rewrite bool case expressions as if expressions *)
       
    57 
       
    58 local
       
    59   val is_bool_case = (fn
       
    60       Const (@{const_name "bool.bool_case"}, _) $ _ $ _ $ _ => true
       
    61     | _ => false)
       
    62 
       
    63   val thms = @{lemma
       
    64     "(case P of True => x | False => y) == (if P then x else y)"
       
    65     "(case P of False => y | True => x) == (if P then x else y)"
       
    66     by (rule eq_reflection, simp)+}
       
    67   val unfold_conv = if_true_conv is_bool_case (More_Conv.rewrs_conv thms)
       
    68 in
       
    69 fun rewrite_bool_cases ctxt =
       
    70   map ((Term.exists_subterm is_bool_case o Thm.prop_of) ??
       
    71     Conv.fconv_rule (More_Conv.top_conv (K unfold_conv) ctxt))
       
    72 end
       
    73 
       
    74 
       
    75 
       
    76 (* normalization of numerals: rewriting of negative integer numerals into
       
    77    positive numerals, Numeral0 into 0, Numeral1 into 1 *)
       
    78 
       
    79 local
       
    80   fun is_number_sort ctxt T =
       
    81     Sign.of_sort (ProofContext.theory_of ctxt) (T, @{sort number_ring})
       
    82 
       
    83   fun is_strange_number ctxt (t as Const (@{const_name number_of}, _) $ _) =
       
    84         (case try HOLogic.dest_number t of
       
    85           SOME (T, i) => is_number_sort ctxt T andalso i < 2
       
    86         | NONE => false)
       
    87     | is_strange_number _ _ = false
       
    88 
       
    89   val pos_numeral_ss = HOL_ss
       
    90     addsimps [@{thm Int.number_of_minus}, @{thm Int.number_of_Min}]
       
    91     addsimps [@{thm Int.number_of_Pls}, @{thm Int.numeral_1_eq_1}]
       
    92     addsimps @{thms Int.pred_bin_simps}
       
    93     addsimps @{thms Int.normalize_bin_simps}
       
    94     addsimps @{lemma
       
    95       "Int.Min = - Int.Bit1 Int.Pls"
       
    96       "Int.Bit0 (- Int.Pls) = - Int.Pls"
       
    97       "Int.Bit0 (- k) = - Int.Bit0 k"
       
    98       "Int.Bit1 (- k) = - Int.Bit1 (Int.pred k)"
       
    99       by simp_all (simp add: pred_def)}
       
   100 
       
   101   fun pos_conv ctxt = if_conv (is_strange_number ctxt)
       
   102     (Simplifier.rewrite (Simplifier.context ctxt pos_numeral_ss))
       
   103     Conv.no_conv
       
   104 in
       
   105 fun normalize_numerals ctxt =
       
   106   map ((Term.exists_subterm (is_strange_number ctxt) o Thm.prop_of) ??
       
   107     Conv.fconv_rule (More_Conv.top_sweep_conv pos_conv ctxt))
       
   108 end
       
   109 
       
   110 
       
   111 
       
   112 (* embedding of standard natural number operations into integer operations *)
       
   113 
       
   114 local
       
   115   val nat_embedding = @{lemma
       
   116     "nat (int n) = n"
       
   117     "i >= 0 --> int (nat i) = i"
       
   118     "i < 0 --> int (nat i) = 0"
       
   119     by simp_all}
       
   120 
       
   121   val nat_rewriting = @{lemma
       
   122     "0 = nat 0"
       
   123     "1 = nat 1"
       
   124     "number_of i = nat (number_of i)"
       
   125     "int (nat 0) = 0"
       
   126     "int (nat 1) = 1"
       
   127     "a < b = (int a < int b)"
       
   128     "a <= b = (int a <= int b)"
       
   129     "Suc a = nat (int a + 1)"
       
   130     "a + b = nat (int a + int b)"
       
   131     "a - b = nat (int a - int b)"
       
   132     "a * b = nat (int a * int b)"
       
   133     "a div b = nat (int a div int b)"
       
   134     "a mod b = nat (int a mod int b)"
       
   135     "min a b = nat (min (int a) (int b))"
       
   136     "max a b = nat (max (int a) (int b))"
       
   137     "int (nat (int a + int b)) = int a + int b"
       
   138     "int (nat (int a * int b)) = int a * int b"
       
   139     "int (nat (int a div int b)) = int a div int b"
       
   140     "int (nat (int a mod int b)) = int a mod int b"
       
   141     "int (nat (min (int a) (int b))) = min (int a) (int b)"
       
   142     "int (nat (max (int a) (int b))) = max (int a) (int b)"
       
   143     by (simp add: nat_mult_distrib nat_div_distrib nat_mod_distrib
       
   144       int_mult[symmetric] zdiv_int[symmetric] zmod_int[symmetric])+}
       
   145 
       
   146   fun on_positive num f x = 
       
   147     (case try HOLogic.dest_number (Thm.term_of num) of
       
   148       SOME (_, i) => if i >= 0 then SOME (f x) else NONE
       
   149     | NONE => NONE)
       
   150 
       
   151   val cancel_int_nat_ss = HOL_ss
       
   152     addsimps [@{thm Nat_Numeral.nat_number_of}]
       
   153     addsimps [@{thm Nat_Numeral.int_nat_number_of}]
       
   154     addsimps @{thms neg_simps}
       
   155 
       
   156   fun cancel_int_nat_simproc _ ss ct = 
       
   157     let
       
   158       val num = Thm.dest_arg (Thm.dest_arg ct)
       
   159       val goal = Thm.mk_binop @{cterm "op == :: int => _"} ct num
       
   160       val simpset = Simplifier.inherit_context ss cancel_int_nat_ss
       
   161       fun tac _ = Simplifier.simp_tac simpset 1
       
   162     in on_positive num (Goal.prove_internal [] goal) tac end
       
   163 
       
   164   val nat_ss = HOL_ss
       
   165     addsimps nat_rewriting
       
   166     addsimprocs [Simplifier.make_simproc {
       
   167       name = "cancel_int_nat_num", lhss = [@{cpat "int (nat _)"}],
       
   168       proc = cancel_int_nat_simproc, identifier = [] }]
       
   169 
       
   170   fun conv ctxt = Simplifier.rewrite (Simplifier.context ctxt nat_ss)
       
   171 
       
   172   val uses_nat_type = Term.exists_type (Term.exists_subtype (equal @{typ nat}))
       
   173   val uses_nat_int =
       
   174     Term.exists_subterm (member (op aconv) [@{term int}, @{term nat}])
       
   175 in
       
   176 fun nat_as_int ctxt =
       
   177   map ((uses_nat_type o Thm.prop_of) ?? Conv.fconv_rule (conv ctxt)) #>
       
   178   exists (uses_nat_int o Thm.prop_of) ?? append nat_embedding
       
   179 end
       
   180 
       
   181 
       
   182 
       
   183 (* unfold definitions of specific constants *)
       
   184 
       
   185 local
       
   186   fun mk_entry (t as Const (n, _)) thm = ((n, t), thm)
       
   187     | mk_entry t _ = raise TERM ("mk_entry", [t])
       
   188   fun prepare_def thm =
       
   189     (case Thm.prop_of thm of
       
   190       Const (@{const_name "=="}, _) $ t $ _ => mk_entry (Term.head_of t) thm
       
   191     | t => raise TERM ("prepare_def", [t]))
       
   192 
       
   193   val defs = map prepare_def [
       
   194     @{thm abs_if[where 'a = int, THEN eq_reflection]},
       
   195     @{thm abs_if[where 'a = real, THEN eq_reflection]},
       
   196     @{thm min_def[where 'a = int, THEN eq_reflection]},
       
   197     @{thm min_def[where 'a = real, THEN eq_reflection]},
       
   198     @{thm max_def[where 'a = int, THEN eq_reflection]},
       
   199     @{thm max_def[where 'a = real, THEN eq_reflection]},
       
   200     @{thm Ex1_def}, @{thm Ball_def}, @{thm Bex_def}]
       
   201 
       
   202   fun matches thy ((t as Const (n, _)), (m, p)) =
       
   203         n = m andalso Pattern.matches thy (p, t)
       
   204     | matches _ _ = false
       
   205 
       
   206   fun lookup_def thy = AList.lookup (matches thy) defs
       
   207   fun lookup_def_head thy = lookup_def thy o Term.head_of
       
   208 
       
   209   fun occurs_def thy = Term.exists_subterm (is_some o lookup_def thy)
       
   210 
       
   211   fun unfold_def_conv ctxt ct =
       
   212     (case lookup_def_head (ProofContext.theory_of ctxt) (Thm.term_of ct) of
       
   213       SOME thm => Conv.rewr_conv thm
       
   214     | NONE => Conv.all_conv) ct
       
   215 in
       
   216 fun unfold_defs ctxt =
       
   217   (occurs_def (ProofContext.theory_of ctxt) o Thm.prop_of) ??
       
   218   Conv.fconv_rule (More_Conv.top_conv unfold_def_conv ctxt)
       
   219 end
       
   220 
       
   221 
       
   222 
       
   223 (* further normalizations: beta/eta, universal closure, atomize *)
       
   224 
       
   225 local
       
   226   val all1 = @{lemma "All P == ALL x. P x" by (rule reflexive)}
       
   227   val all2 = @{lemma "All == (%P. ALL x. P x)" by (rule reflexive)}
       
   228   val ex1 = @{lemma "Ex P == EX x. P x" by (rule reflexive)}
       
   229   val ex2 = @{lemma "Ex == (%P. EX x. P x)" by (rule reflexive)}
       
   230   val let1 = @{lemma "Let c P == let x = c in P x" by (rule reflexive)}
       
   231   val let2 = @{lemma "Let c == (%P. let x = c in P x)" by (rule reflexive)}
       
   232   val let3 = @{lemma "Let == (%c P. let x = c in P x)" by (rule reflexive)}
       
   233 
       
   234   fun all_abs_conv cv ctxt =
       
   235     Conv.abs_conv (all_abs_conv cv o snd) ctxt else_conv cv ctxt
       
   236   fun keep_conv ctxt = More_Conv.binder_conv norm_conv ctxt
       
   237   and unfold_conv rule ctxt =
       
   238     Conv.rewr_conv rule then_conv all_abs_conv keep_conv ctxt
       
   239   and unfold_let_conv rule ctxt =
       
   240     Conv.rewr_conv rule then_conv
       
   241     all_abs_conv (fn cx => Conv.combination_conv
       
   242       (Conv.arg_conv (norm_conv cx)) (Conv.abs_conv (norm_conv o snd) cx)) ctxt
       
   243   and norm_conv ctxt ct =
       
   244     (case Thm.term_of ct of
       
   245       Const (@{const_name All}, _) $ Abs _ => keep_conv
       
   246     | Const (@{const_name All}, _) $ _ => unfold_conv all1
       
   247     | Const (@{const_name All}, _) => unfold_conv all2
       
   248     | Const (@{const_name Ex}, _) $ Abs _ => keep_conv
       
   249     | Const (@{const_name Ex}, _) $ _ => unfold_conv ex1
       
   250     | Const (@{const_name Ex}, _) => unfold_conv ex2
       
   251     | Const (@{const_name Let}, _) $ _ $ Abs _ => keep_conv
       
   252     | Const (@{const_name Let}, _) $ _ $ _ => unfold_let_conv let1
       
   253     | Const (@{const_name Let}, _) $ _ => unfold_let_conv let2
       
   254     | Const (@{const_name Let}, _) => unfold_let_conv let3
       
   255     | Abs _ => Conv.abs_conv (norm_conv o snd)
       
   256     | _ $ _ => Conv.comb_conv o norm_conv
       
   257     | _ => K Conv.all_conv) ctxt ct
       
   258 
       
   259   fun is_normed t =
       
   260     (case t of
       
   261       Const (@{const_name All}, _) $ Abs (_, _, u) => is_normed u
       
   262     | Const (@{const_name All}, _) $ _ => false
       
   263     | Const (@{const_name All}, _) => false
       
   264     | Const (@{const_name Ex}, _) $ Abs (_, _, u) => is_normed u
       
   265     | Const (@{const_name Ex}, _) $ _ => false
       
   266     | Const (@{const_name Ex}, _) => false
       
   267     | Const (@{const_name Let}, _) $ u1 $ Abs (_, _, u2) =>
       
   268         is_normed u1 andalso is_normed u2
       
   269     | Const (@{const_name Let}, _) $ _ $ _ => false
       
   270     | Const (@{const_name Let}, _) $ _ => false
       
   271     | Const (@{const_name Let}, _) => false
       
   272     | Abs (_, _, u) => is_normed u
       
   273     | u1 $ u2 => is_normed u1 andalso is_normed u2
       
   274     | _ => true)
       
   275 in
       
   276 fun norm_binder_conv ctxt = if_conv is_normed Conv.all_conv (norm_conv ctxt)
       
   277 end
       
   278 
       
   279 fun norm_def ctxt thm =
       
   280   (case Thm.prop_of thm of
       
   281     @{term Trueprop} $ (Const (@{const_name "op ="}, _) $ _ $ Abs _) =>
       
   282       norm_def ctxt (thm RS @{thm fun_cong})
       
   283   | Const (@{const_name "=="}, _) $ _ $ Abs _ =>
       
   284       norm_def ctxt (thm RS @{thm meta_eq_to_obj_eq})
       
   285   | _ => thm)
       
   286 
       
   287 fun atomize_conv ctxt ct =
       
   288   (case Thm.term_of ct of
       
   289     @{term "op ==>"} $ _ $ _ =>
       
   290       Conv.binop_conv (atomize_conv ctxt) then_conv
       
   291       Conv.rewr_conv @{thm atomize_imp}
       
   292   | Const (@{const_name "=="}, _) $ _ $ _ =>
       
   293       Conv.binop_conv (atomize_conv ctxt) then_conv
       
   294       Conv.rewr_conv @{thm atomize_eq}
       
   295   | Const (@{const_name all}, _) $ Abs _ =>
       
   296       More_Conv.binder_conv atomize_conv ctxt then_conv
       
   297       Conv.rewr_conv @{thm atomize_all}
       
   298   | _ => Conv.all_conv) ct
       
   299 
       
   300 fun normalize_rule ctxt =
       
   301   Conv.fconv_rule (
       
   302     (* reduce lambda abstractions, except at known binders: *)
       
   303     Thm.beta_conversion true then_conv
       
   304     Thm.eta_conversion then_conv
       
   305     norm_binder_conv ctxt) #>
       
   306   norm_def ctxt #>
       
   307   Drule.forall_intr_vars #>
       
   308   Conv.fconv_rule (atomize_conv ctxt)
       
   309 
       
   310 
       
   311 
       
   312 (* lift lambda terms into additional rules *)
       
   313 
       
   314 local
       
   315   val meta_eq = @{cpat "op =="}
       
   316   val meta_eqT = hd (Thm.dest_ctyp (Thm.ctyp_of_term meta_eq))
       
   317   fun inst_meta cT = Thm.instantiate_cterm ([(meta_eqT, cT)], []) meta_eq
       
   318   fun mk_meta_eq ct cu = Thm.mk_binop (inst_meta (Thm.ctyp_of_term ct)) ct cu
       
   319 
       
   320   fun cert ctxt = Thm.cterm_of (ProofContext.theory_of ctxt)
       
   321 
       
   322   fun used_vars cvs ct =
       
   323     let
       
   324       val lookup = AList.lookup (op aconv) (map (` Thm.term_of) cvs)
       
   325       val add = (fn SOME ct => insert (op aconvc) ct | _ => I)
       
   326     in Term.fold_aterms (add o lookup) (Thm.term_of ct) [] end
       
   327 
       
   328   fun apply cv thm = 
       
   329     let val thm' = Thm.combination thm (Thm.reflexive cv)
       
   330     in Thm.transitive thm' (Thm.beta_conversion false (Thm.rhs_of thm')) end
       
   331   fun apply_def cvs eq = Thm.symmetric (fold apply cvs eq)
       
   332 
       
   333   fun replace_lambda cvs ct (cx as (ctxt, defs)) =
       
   334     let
       
   335       val cvs' = used_vars cvs ct
       
   336       val ct' = fold_rev Thm.cabs cvs' ct
       
   337     in
       
   338       (case Termtab.lookup defs (Thm.term_of ct') of
       
   339         SOME eq => (apply_def cvs' eq, cx)
       
   340       | NONE =>
       
   341           let
       
   342             val {T, ...} = Thm.rep_cterm ct' and n = Name.uu
       
   343             val (n', ctxt') = yield_singleton Variable.variant_fixes n ctxt
       
   344             val cu = mk_meta_eq (cert ctxt (Free (n', T))) ct'
       
   345             val (eq, ctxt'') = yield_singleton Assumption.add_assumes cu ctxt'
       
   346             val defs' = Termtab.update (Thm.term_of ct', eq) defs
       
   347           in (apply_def cvs' eq, (ctxt'', defs')) end)
       
   348     end
       
   349 
       
   350   fun none ct cx = (Thm.reflexive ct, cx)
       
   351   fun in_comb f g ct cx =
       
   352     let val (cu1, cu2) = Thm.dest_comb ct
       
   353     in cx |> f cu1 ||>> g cu2 |>> uncurry Thm.combination end
       
   354   fun in_arg f = in_comb none f
       
   355   fun in_abs f cvs ct (ctxt, defs) =
       
   356     let
       
   357       val (n, ctxt') = yield_singleton Variable.variant_fixes Name.uu ctxt
       
   358       val (cv, cu) = Thm.dest_abs (SOME n) ct
       
   359     in  (ctxt', defs) |> f (cv :: cvs) cu |>> Thm.abstract_rule n cv end
       
   360 
       
   361   fun traverse cvs ct =
       
   362     (case Thm.term_of ct of
       
   363       Const (@{const_name All}, _) $ Abs _ => in_arg (in_abs traverse cvs)
       
   364     | Const (@{const_name Ex}, _) $ Abs _ => in_arg (in_abs traverse cvs)
       
   365     | Const (@{const_name Let}, _) $ _ $ Abs _ =>
       
   366         in_comb (in_arg (traverse cvs)) (in_abs traverse cvs)
       
   367     | Abs _ => at_lambda cvs
       
   368     | _ $ _ => in_comb (traverse cvs) (traverse cvs)
       
   369     | _ => none) ct
       
   370 
       
   371   and at_lambda cvs ct =
       
   372     in_abs traverse cvs ct #-> (fn thm =>
       
   373     replace_lambda cvs (Thm.rhs_of thm) #>> Thm.transitive thm)
       
   374 
       
   375   fun has_free_lambdas t =
       
   376     (case t of
       
   377       Const (@{const_name All}, _) $ Abs (_, _, u) => has_free_lambdas u
       
   378     | Const (@{const_name Ex}, _) $ Abs (_, _, u) => has_free_lambdas u
       
   379     | Const (@{const_name Let}, _) $ u1 $ Abs (_, _, u2) =>
       
   380         has_free_lambdas u1 orelse has_free_lambdas u2
       
   381     | Abs _ => true
       
   382     | u1 $ u2 => has_free_lambdas u1 orelse has_free_lambdas u2
       
   383     | _ => false)
       
   384 
       
   385   fun lift_lm f thm cx =
       
   386     if not (has_free_lambdas (Thm.prop_of thm)) then (thm, cx)
       
   387     else cx |> f (Thm.cprop_of thm) |>> (fn thm' => Thm.equal_elim thm' thm)
       
   388 in
       
   389 fun lift_lambdas thms ctxt =
       
   390   let
       
   391     val cx = (ctxt, Termtab.empty)
       
   392     val (thms', (ctxt', defs)) = fold_map (lift_lm (traverse [])) thms cx
       
   393     val eqs = Termtab.fold (cons o normalize_rule ctxt' o snd) defs []
       
   394   in (eqs @ thms', ctxt') end
       
   395 end
       
   396 
       
   397 
       
   398 
       
   399 (* make application explicit for functions with varying number of arguments *)
       
   400 
       
   401 local
       
   402   val const = prefix "c" and free = prefix "f"
       
   403   fun min i (e as (_, j)) = if i <> j then (true, Int.min (i, j)) else e
       
   404   fun add t i = Symtab.map_default (t, (false, i)) (min i)
       
   405   fun traverse t =
       
   406     (case Term.strip_comb t of
       
   407       (Const (n, _), ts) => add (const n) (length ts) #> fold traverse ts 
       
   408     | (Free (n, _), ts) => add (free n) (length ts) #> fold traverse ts
       
   409     | (Abs (_, _, u), ts) => fold traverse (u :: ts)
       
   410     | (_, ts) => fold traverse ts)
       
   411   val prune = (fn (n, (true, i)) => Symtab.update (n, i) | _ => I)
       
   412   fun prune_tab tab = Symtab.fold prune tab Symtab.empty
       
   413 
       
   414   fun binop_conv cv1 cv2 = Conv.combination_conv (Conv.arg_conv cv1) cv2
       
   415   fun nary_conv conv1 conv2 ct =
       
   416     (Conv.combination_conv (nary_conv conv1 conv2) conv2 else_conv conv1) ct
       
   417   fun abs_conv conv tb = Conv.abs_conv (fn (cv, cx) =>
       
   418     let val n = fst (Term.dest_Free (Thm.term_of cv))
       
   419     in conv (Symtab.update (free n, 0) tb) cx end)
       
   420   val apply_rule = @{lemma "f x == apply f x" by (simp add: apply_def)}
       
   421 in
       
   422 fun explicit_application ctxt thms =
       
   423   let
       
   424     fun sub_conv tb ctxt ct =
       
   425       (case Term.strip_comb (Thm.term_of ct) of
       
   426         (Const (n, _), ts) => app_conv tb (const n) (length ts) ctxt
       
   427       | (Free (n, _), ts) => app_conv tb (free n) (length ts) ctxt
       
   428       | (Abs _, _) => nary_conv (abs_conv sub_conv tb ctxt) (sub_conv tb ctxt)
       
   429       | (_, _) => nary_conv Conv.all_conv (sub_conv tb ctxt)) ct
       
   430     and app_conv tb n i ctxt =
       
   431       (case Symtab.lookup tb n of
       
   432         NONE => nary_conv Conv.all_conv (sub_conv tb ctxt)
       
   433       | SOME j => apply_conv tb ctxt (i - j))
       
   434     and apply_conv tb ctxt i ct = (
       
   435       if i = 0 then nary_conv Conv.all_conv (sub_conv tb ctxt)
       
   436       else
       
   437         Conv.rewr_conv apply_rule then_conv
       
   438         binop_conv (apply_conv tb ctxt (i-1)) (sub_conv tb ctxt)) ct
       
   439 
       
   440     fun needs_exp_app tab = Term.exists_subterm (fn
       
   441         Bound _ $ _ => true
       
   442       | Const (n, _) => Symtab.defined tab (const n)
       
   443       | Free (n, _) => Symtab.defined tab (free n)
       
   444       | _ => false)
       
   445 
       
   446     fun rewrite tab ctxt thm =
       
   447       if not (needs_exp_app tab (Thm.prop_of thm)) then thm
       
   448       else Conv.fconv_rule (sub_conv tab ctxt) thm
       
   449 
       
   450     val tab = prune_tab (fold (traverse o Thm.prop_of) thms Symtab.empty)
       
   451   in map (rewrite tab ctxt) thms end
       
   452 end
       
   453 
       
   454 
       
   455 
       
   456 (* combined normalization *)
       
   457 
       
   458 fun normalize thms ctxt =
       
   459   thms
       
   460   |> trivial_distinct ctxt
       
   461   |> rewrite_bool_cases ctxt
       
   462   |> normalize_numerals ctxt
       
   463   |> nat_as_int ctxt
       
   464   |> map (unfold_defs ctxt #> normalize_rule ctxt)
       
   465   |> rpair ctxt
       
   466   |-> SMT_Monomorph.monomorph
       
   467   |-> lift_lambdas
       
   468   |-> (fn thms' => `(fn ctxt' => explicit_application ctxt' thms'))
       
   469 
       
   470 end