src/HOL/Matrix/Matrix.thy
changeset 14593 90c88e7ef62d
child 14662 d2c6a0f030ab
equal deleted inserted replaced
14592:dd1a2905ea73 14593:90c88e7ef62d
       
     1 (*  Title:      HOL/Matrix/Matrix.thy
       
     2     ID:         $Id$
       
     3     Author:     Steven Obua
       
     4     License:    2004 Technische Universität München
       
     5 *)
       
     6 
       
     7 theory Matrix=MatrixGeneral:
       
     8 
       
     9 axclass almost_matrix_element < zero, plus, times
       
    10 matrix_add_assoc: "(a+b)+c = a + (b+c)"
       
    11 matrix_add_commute: "a+b = b+a"
       
    12 
       
    13 matrix_mult_assoc: "(a*b)*c = a*(b*c)"
       
    14 matrix_mult_left_0[simp]: "0 * a = 0"
       
    15 matrix_mult_right_0[simp]: "a * 0 = 0"
       
    16 
       
    17 matrix_left_distrib: "(a+b)*c = a*c+b*c"
       
    18 matrix_right_distrib: "a*(b+c) = a*b+a*c"
       
    19 
       
    20 axclass matrix_element < almost_matrix_element
       
    21 matrix_add_0[simp]: "0+0 = 0"
       
    22 
       
    23 instance matrix :: (plus) plus
       
    24 by (intro_classes)
       
    25 
       
    26 instance matrix :: (times) times
       
    27 by (intro_classes)
       
    28 
       
    29 defs (overloaded)
       
    30 plus_matrix_def: "A + B == combine_matrix (op +) A B"
       
    31 times_matrix_def: "A * B == mult_matrix (op *) (op +) A B"
       
    32 
       
    33 instance matrix :: (matrix_element) matrix_element
       
    34 proof -
       
    35   note combine_matrix_assoc2 = combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]
       
    36   {
       
    37     fix A::"('a::matrix_element) matrix"
       
    38     fix B
       
    39     fix C
       
    40     have "(A + B) + C = A + (B + C)"
       
    41       apply (simp add: plus_matrix_def)
       
    42       apply (rule combine_matrix_assoc2)
       
    43       by (simp_all add: matrix_add_assoc)
       
    44   }
       
    45   note plus_assoc = this
       
    46   {
       
    47     fix A::"('a::matrix_element) matrix"
       
    48     fix B
       
    49     fix C
       
    50     have "(A * B) * C = A * (B * C)"
       
    51       apply (simp add: times_matrix_def)
       
    52       apply (rule mult_matrix_assoc_simple)
       
    53       apply (simp_all add: associative_def commutative_def distributive_def l_distributive_def r_distributive_def)
       
    54       apply (auto)
       
    55       apply (simp_all add: matrix_add_assoc)
       
    56       apply (simp_all add: matrix_add_commute)
       
    57       apply (simp_all add: matrix_mult_assoc)
       
    58       by (simp_all add: matrix_left_distrib matrix_right_distrib)
       
    59   }
       
    60   note mult_assoc = this
       
    61   note combine_matrix_commute2 = combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]
       
    62   {
       
    63     fix A::"('a::matrix_element) matrix"
       
    64     fix B
       
    65     have "A + B = B + A"
       
    66       apply (simp add: plus_matrix_def)
       
    67       apply (insert combine_matrix_commute2[of "op +"])
       
    68       apply (rule combine_matrix_commute2)
       
    69       by (simp add: matrix_add_commute)
       
    70   }
       
    71   note plus_commute = this
       
    72   have plus_zero: "(0::('a::matrix_element) matrix) + 0 = 0"
       
    73     apply (simp add: plus_matrix_def)
       
    74     apply (rule combine_matrix_zero)
       
    75     by (simp)
       
    76   have mult_left_zero: "!! A. (0::('a::matrix_element) matrix) * A = 0" by(simp add: times_matrix_def)
       
    77   have mult_right_zero: "!! A. A * (0::('a::matrix_element) matrix) = 0" by (simp add: times_matrix_def)
       
    78   note l_distributive_matrix2 = l_distributive_matrix[simplified l_distributive_def matrix_left_distrib, THEN spec, THEN spec, THEN spec]
       
    79   {
       
    80     fix A::"('a::matrix_element) matrix" 
       
    81     fix B 
       
    82     fix C
       
    83     have "(A + B) * C = A * C + B * C"
       
    84       apply (simp add: plus_matrix_def)
       
    85       apply (simp add: times_matrix_def)
       
    86       apply (rule l_distributive_matrix2)
       
    87       apply (simp_all add: associative_def commutative_def l_distributive_def)
       
    88       apply (auto)
       
    89       apply (simp_all add: matrix_add_assoc) 
       
    90       apply (simp_all add: matrix_add_commute)
       
    91       by (simp_all add: matrix_left_distrib)
       
    92   }
       
    93   note left_distrib = this
       
    94   note r_distributive_matrix2 = r_distributive_matrix[simplified r_distributive_def matrix_right_distrib, THEN spec, THEN spec, THEN spec]
       
    95   {
       
    96     fix A::"('a::matrix_element) matrix" 
       
    97     fix B 
       
    98     fix C
       
    99     have "C * (A + B) = C * A + C * B"
       
   100       apply (simp add: plus_matrix_def)
       
   101       apply (simp add: times_matrix_def)
       
   102       apply (rule r_distributive_matrix2)
       
   103       apply (simp_all add: associative_def commutative_def r_distributive_def)
       
   104       apply (auto)
       
   105       apply (simp_all add: matrix_add_assoc) 
       
   106       apply (simp_all add: matrix_add_commute)
       
   107       by (simp_all add: matrix_right_distrib)
       
   108   }
       
   109   note right_distrib = this
       
   110   show "OFCLASS('a matrix, matrix_element_class)"
       
   111     apply (intro_classes)
       
   112     apply (simp_all add: plus_assoc)
       
   113     apply (simp_all add: plus_commute)
       
   114     apply (simp_all add: plus_zero)
       
   115     apply (simp_all add: mult_assoc)
       
   116     apply (simp_all add: mult_left_zero mult_right_zero)
       
   117     by (simp_all add: left_distrib right_distrib)
       
   118 qed
       
   119 
       
   120 axclass g_almost_semiring < almost_matrix_element
       
   121 g_add_left_0[simp]: "0 + a = a"
       
   122 
       
   123 lemma g_add_right_0[simp]: "(a::'a::g_almost_semiring) + 0 = a"
       
   124 by (simp add: matrix_add_commute)
       
   125 
       
   126 axclass g_semiring < g_almost_semiring
       
   127 g_add_leftimp_eq: "a+b = a+c \<Longrightarrow> b = c"
       
   128 
       
   129 instance g_almost_semiring < matrix_element
       
   130 by (intro_classes, simp)
       
   131 
       
   132 instance semiring < g_semiring
       
   133 apply (intro_classes)
       
   134 apply (simp_all add: add_ac)
       
   135 by (simp_all add: mult_assoc left_distrib right_distrib)
       
   136 
       
   137 instance matrix :: (g_almost_semiring) g_almost_semiring
       
   138 apply (intro_classes)
       
   139 by (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def)
       
   140 
       
   141 lemma RepAbs_matrix_eq_left: " Rep_matrix(Abs_matrix f) = g \<Longrightarrow> \<exists>m. \<forall>j i. m \<le> j \<longrightarrow> f j i = 0 \<Longrightarrow> \<exists>n. \<forall>j i. n \<le> i \<longrightarrow> f j i = 0 \<Longrightarrow> f = g"
       
   142 by (simp add: RepAbs_matrix)
       
   143 
       
   144 lemma RepAbs_matrix_eq_right: "g = Rep_matrix(Abs_matrix f) \<Longrightarrow> \<exists>m. \<forall>j i. m \<le> j \<longrightarrow> f j i = 0 \<Longrightarrow> \<exists>n. \<forall>j i. n \<le> i \<longrightarrow> f j i = 0 \<Longrightarrow> g = f"
       
   145 by (simp add: RepAbs_matrix)
       
   146 
       
   147 instance matrix :: (g_semiring) g_semiring
       
   148 apply (intro_classes)
       
   149 apply (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def)
       
   150 apply (subst Rep_matrix_inject[THEN sym])
       
   151 apply (drule ssubst[OF Rep_matrix_inject, of "% x. x"])
       
   152 apply (drule RepAbs_matrix_eq_left)
       
   153 apply (auto)
       
   154 apply (rule_tac x="max (nrows a) (nrows b)" in exI, simp add: nrows_le)
       
   155 apply (rule_tac x="max (ncols a) (ncols b)" in exI, simp add: ncols_le)
       
   156 apply (drule RepAbs_matrix_eq_right)
       
   157 apply (rule_tac x="max (nrows a) (nrows c)" in exI, simp add: nrows_le)
       
   158 apply (rule_tac x="max (ncols a) (ncols c)" in exI, simp add: ncols_le)
       
   159 apply (rule ext)+
       
   160 apply (drule_tac x="x" and y="x" in comb, simp)
       
   161 apply (drule_tac x="xa" and y="xa" in comb, simp)
       
   162 apply (drule g_add_leftimp_eq)
       
   163 by simp
       
   164 
       
   165 axclass pordered_matrix_element < matrix_element, order, zero
       
   166 pordered_add_right_mono: "a <= b \<Longrightarrow> a + c <= b + c"
       
   167 pordered_mult_left: "0 <= c \<Longrightarrow> a <= b \<Longrightarrow> c*a <= c*b"
       
   168 pordered_mult_right: "0 <= c \<Longrightarrow> a <= b \<Longrightarrow> a*c <= b*c"
       
   169 
       
   170 lemma pordered_add_left_mono: "(a::'a::pordered_matrix_element) <= b \<Longrightarrow> c + a <= c + b"
       
   171 apply (insert pordered_add_right_mono[of a b c])
       
   172 by (simp add: matrix_add_commute)
       
   173 
       
   174 lemma pordered_add: "(a::'a::pordered_matrix_element) <= b \<Longrightarrow> (c::'a::pordered_matrix_element) <= d \<Longrightarrow> a+c <= b+d"
       
   175 proof -
       
   176   assume p1:"a <= b"
       
   177   assume p2:"c <= d"
       
   178   have "a+c <= b+c" by (rule pordered_add_right_mono) 
       
   179   also have "\<dots> <= b+d" by (rule pordered_add_left_mono)
       
   180   ultimately show "a+c <= b+d" by simp
       
   181 qed
       
   182 
       
   183 instance matrix :: (pordered_matrix_element) pordered_matrix_element 
       
   184 apply (intro_classes)
       
   185 apply (simp_all add: plus_matrix_def times_matrix_def)
       
   186 apply (rule le_combine_matrix)
       
   187 apply (simp_all)
       
   188 apply (simp_all add: pordered_add)
       
   189 apply (rule le_left_mult)
       
   190 apply (simp_all add: matrix_add_0 g_add_left_0 pordered_add pordered_mult_left matrix_mult_left_0 matrix_mult_right_0)
       
   191 apply (rule le_right_mult)
       
   192 by (simp_all add: pordered_add pordered_mult_right)
       
   193 
       
   194 axclass pordered_g_semiring < g_semiring, pordered_matrix_element
       
   195 
       
   196 instance almost_ordered_semiring < pordered_g_semiring
       
   197 apply (intro_classes)
       
   198 by (simp_all add: add_right_mono mult_right_mono mult_left_mono)
       
   199 
       
   200 instance matrix :: (pordered_g_semiring) pordered_g_semiring
       
   201 by (intro_classes)
       
   202 
       
   203 lemma nrows_mult: "nrows ((A::('a::matrix_element) matrix) * B) <= nrows A"
       
   204 by (simp add: times_matrix_def mult_nrows)
       
   205 
       
   206 lemma ncols_mult: "ncols ((A::('a::matrix_element) matrix) * B) <= ncols B"
       
   207 by (simp add: times_matrix_def mult_ncols)
       
   208 
       
   209 constdefs
       
   210   one_matrix :: "nat \<Rightarrow> ('a::semiring) matrix"
       
   211   "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)"
       
   212 
       
   213 lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
       
   214 apply (simp add: one_matrix_def)
       
   215 apply (subst RepAbs_matrix)
       
   216 apply (rule exI[of _ n], simp add: split_if)+
       
   217 by (simp add: split_if, arith)
       
   218 
       
   219 lemma nrows_one_matrix[simp]: "nrows (one_matrix n) = n" (is "?r = _")
       
   220 proof -
       
   221   have "?r <= n" by (simp add: nrows_le)
       
   222   moreover have "n <= ?r" by (simp add: le_nrows, arith)
       
   223   ultimately show "?r = n" by simp
       
   224 qed
       
   225 
       
   226 lemma ncols_one_matrix[simp]: "ncols (one_matrix n) = n" (is "?r = _")
       
   227 proof -
       
   228   have "?r <= n" by (simp add: ncols_le)
       
   229   moreover have "n <= ?r" by (simp add: le_ncols, arith)
       
   230   ultimately show "?r = n" by simp
       
   231 qed
       
   232 
       
   233 lemma one_matrix_mult_right: "ncols A <= n \<Longrightarrow> A * (one_matrix n) = A"
       
   234 apply (subst Rep_matrix_inject[THEN sym])
       
   235 apply (rule ext)+
       
   236 apply (simp add: times_matrix_def Rep_mult_matrix)
       
   237 apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero])
       
   238 apply (simp_all)
       
   239 by (simp add: max_def ncols)
       
   240 
       
   241 lemma one_matrix_mult_left: "nrows A <= n \<Longrightarrow> (one_matrix n) * A = A"
       
   242 apply (subst Rep_matrix_inject[THEN sym])
       
   243 apply (rule ext)+
       
   244 apply (simp add: times_matrix_def Rep_mult_matrix)
       
   245 apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero])
       
   246 apply (simp_all)
       
   247 by (simp add: max_def nrows)
       
   248 
       
   249 constdefs 
       
   250   right_inverse_matrix :: "('a::semiring) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
       
   251   "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X)))" 
       
   252   inverse_matrix :: "('a::semiring) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
       
   253   "inverse_matrix A X == (right_inverse_matrix A X) \<and> (right_inverse_matrix X A)"
       
   254 
       
   255 lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
       
   256 apply (insert ncols_mult[of A X], insert nrows_mult[of A X])
       
   257 by (simp add: right_inverse_matrix_def)
       
   258 
       
   259 (* to be continued \<dots> *)
       
   260 
       
   261 end
       
   262 
       
   263 
       
   264 
       
   265 
       
   266 
       
   267 
       
   268 
       
   269 
       
   270 
       
   271 
       
   272   
       
   273   
       
   274 
       
   275 
       
   276 
       
   277 
       
   278 
       
   279 
       
   280 
       
   281 
       
   282 
       
   283