src/CCL/ex/Nat.thy
changeset 58977 9576b510f6a2
parent 58974 cbc2ac19d783
child 60770 240563fbf41d
equal deleted inserted replaced
58976:b38a54bbfbd6 58977:9576b510f6a2
     7 
     7 
     8 theory Nat
     8 theory Nat
     9 imports "../Wfd"
     9 imports "../Wfd"
    10 begin
    10 begin
    11 
    11 
    12 definition not :: "i=>i"
    12 definition not :: "i\<Rightarrow>i"
    13   where "not(b) == if b then false else true"
    13   where "not(b) == if b then false else true"
    14 
    14 
    15 definition add :: "[i,i]=>i"  (infixr "#+" 60)
    15 definition add :: "[i,i]\<Rightarrow>i"  (infixr "#+" 60)
    16   where "a #+ b == nrec(a,b,%x g. succ(g))"
    16   where "a #+ b == nrec(a, b, \<lambda>x g. succ(g))"
    17 
    17 
    18 definition mult :: "[i,i]=>i"  (infixr "#*" 60)
    18 definition mult :: "[i,i]\<Rightarrow>i"  (infixr "#*" 60)
    19   where "a #* b == nrec(a,zero,%x g. b #+ g)"
    19   where "a #* b == nrec(a, zero, \<lambda>x g. b #+ g)"
    20 
    20 
    21 definition sub :: "[i,i]=>i"  (infixr "#-" 60)
    21 definition sub :: "[i,i]\<Rightarrow>i"  (infixr "#-" 60)
    22   where
    22   where
    23     "a #- b ==
    23     "a #- b ==
    24       letrec sub x y be ncase(y,x,%yy. ncase(x,zero,%xx. sub(xx,yy)))
    24       letrec sub x y be ncase(y, x, \<lambda>yy. ncase(x, zero, \<lambda>xx. sub(xx,yy)))
    25       in sub(a,b)"
    25       in sub(a,b)"
    26 
    26 
    27 definition le :: "[i,i]=>i"  (infixr "#<=" 60)
    27 definition le :: "[i,i]\<Rightarrow>i"  (infixr "#<=" 60)
    28   where
    28   where
    29     "a #<= b ==
    29     "a #<= b ==
    30       letrec le x y be ncase(x,true,%xx. ncase(y,false,%yy. le(xx,yy)))
    30       letrec le x y be ncase(x, true, \<lambda>xx. ncase(y, false, \<lambda>yy. le(xx,yy)))
    31       in le(a,b)"
    31       in le(a,b)"
    32 
    32 
    33 definition lt :: "[i,i]=>i"  (infixr "#<" 60)
    33 definition lt :: "[i,i]\<Rightarrow>i"  (infixr "#<" 60)
    34   where "a #< b == not(b #<= a)"
    34   where "a #< b == not(b #<= a)"
    35 
    35 
    36 definition div :: "[i,i]=>i"  (infixr "##" 60)
    36 definition div :: "[i,i]\<Rightarrow>i"  (infixr "##" 60)
    37   where
    37   where
    38     "a ## b ==
    38     "a ## b ==
    39       letrec div x y be if x #< y then zero else succ(div(x#-y,y))
    39       letrec div x y be if x #< y then zero else succ(div(x#-y,y))
    40       in div(a,b)"
    40       in div(a,b)"
    41 
    41 
    42 definition ackermann :: "[i,i]=>i"
    42 definition ackermann :: "[i,i]\<Rightarrow>i"
    43   where
    43   where
    44     "ackermann(a,b) ==
    44     "ackermann(a,b) ==
    45       letrec ack n m be ncase(n,succ(m),%x.
    45       letrec ack n m be ncase(n, succ(m), \<lambda>x.
    46         ncase(m,ack(x,succ(zero)),%y. ack(x,ack(succ(x),y))))
    46         ncase(m,ack(x,succ(zero)), \<lambda>y. ack(x,ack(succ(x),y))))
    47       in ack(a,b)"
    47       in ack(a,b)"
    48 
    48 
    49 lemmas nat_defs = not_def add_def mult_def sub_def le_def lt_def ackermann_def napply_def
    49 lemmas nat_defs = not_def add_def mult_def sub_def le_def lt_def ackermann_def napply_def
    50 
    50 
    51 lemma natBs [simp]:
    51 lemma natBs [simp]:
    58   "f^zero`a = a"
    58   "f^zero`a = a"
    59   "f^succ(n)`a = f(f^n`a)"
    59   "f^succ(n)`a = f(f^n`a)"
    60   by (simp_all add: nat_defs)
    60   by (simp_all add: nat_defs)
    61 
    61 
    62 
    62 
    63 lemma napply_f: "n:Nat ==> f^n`f(a) = f^succ(n)`a"
    63 lemma napply_f: "n:Nat \<Longrightarrow> f^n`f(a) = f^succ(n)`a"
    64   apply (erule Nat_ind)
    64   apply (erule Nat_ind)
    65    apply simp_all
    65    apply simp_all
    66   done
    66   done
    67 
    67 
    68 lemma addT: "[| a:Nat;  b:Nat |] ==> a #+ b : Nat"
    68 lemma addT: "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> a #+ b : Nat"
    69   apply (unfold add_def)
    69   apply (unfold add_def)
    70   apply typechk
    70   apply typechk
    71   done
    71   done
    72 
    72 
    73 lemma multT: "[| a:Nat;  b:Nat |] ==> a #* b : Nat"
    73 lemma multT: "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> a #* b : Nat"
    74   apply (unfold add_def mult_def)
    74   apply (unfold add_def mult_def)
    75   apply typechk
    75   apply typechk
    76   done
    76   done
    77 
    77 
    78 (* Defined to return zero if a<b *)
    78 (* Defined to return zero if a<b *)
    79 lemma subT: "[| a:Nat;  b:Nat |] ==> a #- b : Nat"
    79 lemma subT: "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> a #- b : Nat"
    80   apply (unfold sub_def)
    80   apply (unfold sub_def)
    81   apply typechk
    81   apply typechk
    82   apply clean_ccs
    82   apply clean_ccs
    83   apply (erule NatPRI [THEN wfstI, THEN NatPR_wf [THEN wmap_wf, THEN wfI]])
    83   apply (erule NatPRI [THEN wfstI, THEN NatPR_wf [THEN wmap_wf, THEN wfI]])
    84   done
    84   done
    85 
    85 
    86 lemma leT: "[| a:Nat;  b:Nat |] ==> a #<= b : Bool"
    86 lemma leT: "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> a #<= b : Bool"
    87   apply (unfold le_def)
    87   apply (unfold le_def)
    88   apply typechk
    88   apply typechk
    89   apply clean_ccs
    89   apply clean_ccs
    90   apply (erule NatPRI [THEN wfstI, THEN NatPR_wf [THEN wmap_wf, THEN wfI]])
    90   apply (erule NatPRI [THEN wfstI, THEN NatPR_wf [THEN wmap_wf, THEN wfI]])
    91   done
    91   done
    92 
    92 
    93 lemma ltT: "[| a:Nat;  b:Nat |] ==> a #< b : Bool"
    93 lemma ltT: "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> a #< b : Bool"
    94   apply (unfold not_def lt_def)
    94   apply (unfold not_def lt_def)
    95   apply (typechk leT)
    95   apply (typechk leT)
    96   done
    96   done
    97 
    97 
    98 
    98 
    99 subsection {* Termination Conditions for Ackermann's Function *}
    99 subsection {* Termination Conditions for Ackermann's Function *}
   100 
   100 
   101 lemmas relI = NatPR_wf [THEN NatPR_wf [THEN lex_wf, THEN wfI]]
   101 lemmas relI = NatPR_wf [THEN NatPR_wf [THEN lex_wf, THEN wfI]]
   102 
   102 
   103 lemma "[| a:Nat;  b:Nat |] ==> ackermann(a,b) : Nat"
   103 lemma "\<lbrakk>a:Nat; b:Nat\<rbrakk> \<Longrightarrow> ackermann(a,b) : Nat"
   104   apply (unfold ackermann_def)
   104   apply (unfold ackermann_def)
   105   apply gen_ccs
   105   apply gen_ccs
   106   apply (erule NatPRI [THEN lexI1 [THEN relI]] NatPRI [THEN lexI2 [THEN relI]])+
   106   apply (erule NatPRI [THEN lexI1 [THEN relI]] NatPRI [THEN lexI2 [THEN relI]])+
   107   done
   107   done
   108 
   108